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Abstract
Traditional patckbased sparse representation modeling of natural images usually suffer from tveongrdiitst, it has to solve a
large-scale optimization problem with high computational complexity in dictionary learning. Second, each patch is considered
independently in dictionary learning and sparse coding, which ignores the relationship among pestuliieg in inaccurate
sparse coding coefficients. In this paper, instead of using patch as the basic unit of sparse representation, wecerptgt thfe
group as the basic unit of sparse representation, which is composed of nonlocal patchesilaithtsictures, and establish a
novel sparse representation modeling of natural images, called-lgased sparse representation (GSR). The proposed GSR is
able to sparsely represent natural images in the domain of group, which enforces the int@hs$pdogity and nonlocal
self-similarity of images simultaneously in a unified framework. Moreover, an effectivadaiitive dictionary learning method
for each group with low complexity is designed, rather than dictionary learning from natural imageakd GSR tractable and
robust, a split Bregman based technique is developed to solve the proposetti@BR, minimization problem for image
restoration efficiently. Extensive experiments on image inpainting, image deblunihgnage compressive sensing recovery

manifest that the proposed GSR modeling outperforms many currenpfsthteart schemes in both PSNR and visual perception.
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sensing
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|. INTRODUCTION

I magerestoration has beentensively studied in the past twiecales [1] [20], whose purpose is t@construct the original high
quality imagex from its degraded observed vensiy . It is a typical illposed linear inverse problem and can be geneiatly

mulatedas:

y=HX A, 1)

wherex ,y are lexicographically stacked representations of the original image and the degraded image, respectaely,
matrix representing aon-invertible linear degradation opera@ndn is usually additive Gaussian white nois¢henH is a
mask,that is,H is adiagonalmatrix whose diagonal entries are either 1 or 0, keeping or killing the correspquigelg the
problem(1) becomes image in&ing [5], [6]; when H is a blur operator, the probleft) becomes image deblurring][ [18];
whenH isa set of random projectionie problerm(1) becomes compreise sensingCS)[19], [42].

To cope with the iHposed nature of imagestorationimage prior knowledgis usually employeébr regularizingthe solution

to the following minimization problen8[i [18]:
. 2
argmin, 3|Hx -y|, ®¥K), 2)

where 3||Hx - y||§ is the (, datafidelity term,¥(X) is calledthe regulariation termdenotingimageprior and &-is the regular
zation pararater. Many optimization approaches the aboveegularizatioAbased image inverse problems have been deselop
[16]i[18], [43].

Due to thaimage priorknowledgeplays a critical role in the performance of imagstoratioralgorithms designing effectie
regularization termso reflectthe imagepriors is at the core of imagerestoration Classical regularization termsuch adhalf
guadraturdormulation[21], Mumford-Shah (MS) model [2], and total variation (TV) modelsl] [4], utilize local structurh
patterns and are built on the assumption that images are locally smooth except at edges. These regularization ternts demonstr
high effectiveness in preserving edges and recovering smooth regions. Howevasugibysmear out image details and cannot
deal well with fine structures

In the past several yeasparsityhas been emerging as one of the most significant propertiesuélimages [23], [24] and the
sparsitybasedregularizationhas achieved great success in various image processingadipp, such as denoising [25],
deblurring [11], and supeesolution [26]. The sparse model assumes that each patch of an image can be accurately represented b

a few elements from a basis set called a dictionary, which is learnechftmalimages. Cmpared withtraditionalanalyticad-



ly-designed dittonaries, such as wavelets, curvelets, and bandlets, the learned dictionary enjoys the advantage of being bette
adapted to the imagetherebyenhancinghe sparsity and showing impressive performance owpment. However, there exist

two main problems in the current pathsed sparse representation model. First, dictionary learning is esstalgeand highly
non-convex problem, which often requires high computatiaaahplexity[24], [27]. Second, patcls the unit of sparse repr
sentation, an@éach patch isisuallyconsidered independentiy dictionary learningand sparse codingvhich ignores the rat

tionships between similar pateh in essencesuch asself-similarity. Moreover, with the learned dictiary, the actual sparse

coding process is always calculated with relatively expensive nonlinear estimations, such as match pursuits [28], [a&pwhich
may be unstable and imprecise due to the coherence of the dictionary [37].

Another alternativeignificant propertyexhibitedin naturalimagess the weltknownnonlocal seksimilarity, whichdepicts the
repetitiveness ofigher level patterns (g., textures and structures) globally positioned in imabespired by the success of
nonlocal means (NLMyenoising filter[8], a series of nonlocal regularization terms for inverse problems exploiting nonlocal
self-similarity property of natural images are emergi8g|{[36]. Due to the utilization of selimilarity prior by adaptive no
local graph, nonlodaegularization terms produce superior results over the local ones, with sharper image edges and more image
details B3], [36]. Nonetheless, there are still plenty of image details and strutchatesinnot be recovered accuratédne of he
reasos is that the weighted grapghadopted by thabove nonlocal regularization terrmevitably give rise to disturbance and
inaccuracy due to theénaccurateneights[35].

In recent works, the sparsity and the séthilarity of natural images are usually comhdrte achieve better performance. In
[11], sparsity and seBimilarity are separately characterized by two regularization terms, which are incorpogatberinto the
final cost functional of imageestorationsolutionto enhanceheimagequality. In [12], simultaneous sparse coding is utilized to
impose thasimilar patcheshouldshare the same dictionary elements in their sparse decompositimh acquired impressive
denoising and demosaickimgsults. In [15], aonlocdly centralized sparse repentation (NCSR) modé proposed, whicfirst
obtairs good estimates of the sparse coding coefficients of the original imatee principle of NLM in the domain ofsparse
coding coefficients, and then centralizbe sparse coding coefficients of theserved image to those estimatesmprove the
performance of sparse representation based image restoration.

Lately, low-rark modeling based approaches @éalsoachieved great successimage or video restoratiofo removethe
defects in a videaunrelable pixeb in the video are fitdetected and labeled asssing. Similampatches are grouped such that the
patches in each group share similar underlying structure and fommrank matrix approximately. Finally, the matrix completion

is carried oubn each patch group to restore ttmage[50] [51]. In [5], a lowrank approach toward modeling nonlocal similarity



denoted by SAIST is proposedhich not only provides a conceptually simple interpretation for simultaneous sparse d@dling [
from a bilateal variance estimation perspectiveut also achieves highly competent performance to severaloftdte-art
methods.

In this paper, instead akingpatchas the basic unit of sparse representati@exploittheconcept ofyroupas the basic unit of
sparse representatioand establish a novel sparse representation modelingtofalimages, called grougbasedsparse ref-
sentation (GSR)Compared withtraditional patckbased sparse representation, the contributions of our proposechGiftfiing
are nainly three folds. First, GSR explicitly ardfectivdy characterizes the intrinsiocal sparsityand nonlocal selgimilarity of
natural imagesimultaneously in a unified framework, which adaptively sparsifies the natural image in the dorgesmippf
Second, areffective selfadaptive group dictionary learning method with low complexity is designed, rather than dictionary
learning from natural images. Third, an efficient split Bregman based iterative algorithm is developed tbespteposed
GSRdriven [, minimization problem for image restoratioExperimental resultsn three applications:image inpainting,
deblurring and image CS recovérgve shown thate proposedsSR modebutperformamanycurrent statef-the-art scheras
Part of our previous work for image @&coveryvia GSR has been presented in [47].

The remainder othis paper is organized as followEraditional patckbased sparse representation is introducegectionll.
Section 1l elaborates the design group-basedsparse representation (GSRpdeling and discusses the close relationships
among the GSR model, the group sparsity model and the low rank.i8ed8bnlV proposes a new objectivenctionalformed
by our proposed GSRand gives the implementati details of solving optimizatioproblem Extensive &perimental results are

reported in SectioN. In SectionVI, we summarizahis paper.

Il. TRADITIONAL PATCH-BASED SPARSEREPRESENTATION
In literature, the basic unit of sparse representation for nameajes is patch [24]26]. Mathematically, denote b € R" and
X, € R®: the vectorrepresentatios of the original image and an image patch of q‘a_gxﬂ at locationk, k= 1,2,..n ,
where N andBg are the size of the whole image vector and each image patch vector, respectivelyisahe number of image

patches. Then we have

Xk :RK(X), (3)

whereR, () isan operatothat extractshepatchX, fromthe imageX , and its transpose, denoted Ry () , is able to put back
a patchinto thek-th position in the reconstructed image, padded with zeros elsewdemsidering that patches are usually

overlapped, the recovery of from {Xk} becomes



X=> " Ri(x)./ > Ri.), @)

where the notation/ stands for the elememtise division of two vectors, ant},_ is a vector of siz&¢ with all its elements
being 1.Eq. (4) indicatesothing but arabstractiorstrategy of averaging all the overlapped patches.

For a given dictionanD € R®*™ (M is the number of atoms ib ), the sparse coding process of each pXtchover b is to
find a sparse vectooy, € R™ (i.e., most of the coefficients imy, are zero oclose to zero) such that, ~ D ¢, . Then the
entire image can be sparsely represented by the set of spars¢ cg$lesin practice, the sparse coding problenXgf overp is

usually cast as

oy = argming 3, ~Daf; +efal, ®)

where a-is a constant, anglis 0 or 1. Ifp = 0, that means the sparsity is strictly measured by tmerm of «, , which counts the
nonzero elements imy, . Nonetheless, since the problem(gpfnorm optimization is nowonvex andisuallyNP-hard, it is often
suboptionally solved by greedy algorithms, e.g., orthogonal matching pursuit (OMP) [28]. Alternativply, 1, the (,-norm
minimization is approximated by the convéxnorm, which can be efficiently solved by someamt largescale tools [16][18],
[38], [43].

Similar to Eq. (4), reconstructing from its sparse code{sak} is formulated:
def n n
X=Doa=Y  RiOa)./> Ril.), (6)

where o denotes the concatenation of all , that is, a =[] ,] ,...,o [ . The purpose ointroducingthe notationo is to
exploit D o axto make the expressioof Z::leT(D o) ./ Z::lR «(L,) more convenient.
Now, considering the degraded version in Eq. (1), the regularizaéised image restoration scheme utilizing traditional

patchbased sparsepresentatiomodel is formulated as

d&—argming 3[HD ca—yl[; +afa] (7

where a-is the regularization parameter, apds 0 or 1. Withde, the reconstructed image can be expressedEbyD o de.

The heart ofthe sparse representation modeling lies in the choice of dictidbarin other words, how to seek the best domain
to sparsify a given image? Much effort has been devoted to learning a redundanagjidtiom a set of training example image
patches. To be concrete, given a set of training image paXchepx,,X,,...X ;], whereJ is the number of training image

patches, the goal of dictionary learning is to jointly optimize the dictiomargnd the representation coefficients matrix



A=[a,y,...,a;] such thatx, ~D e, and ||ak||p <L, wherep is 0 or 1. This can be formulated by the following imin

mization problem:

(5B =argmin 3=, ) Dy st e, <Lvic ®)

Apparently, the above minimization problem in Eq. (8) is lesgale and highly nenonvex even whep is 1. To make it
tractable and solvable, some approximation apagines, including MOD [27] and-BVD [24], have been proposed to optimize
and A alternatively, leading to many stadéthe-art results in image processing. However, these approximation approaches for
dictionary learningnevitablyrequire high computationabmplexity.

Apart from high computationalomplexity, from Eq. (5) and Eq. (8), it can be noticed thath patch isctuallyconsidered
independentlyn dictionary learnin@nd sparse codingvhich ighores the relationships between similar pescin essen¢csuch as

self-similarity [4], [11].

I1l.  GROUP-BASED SPARSEREPRESENTATION(GSR)

In this paper, to rectify the above problems of traditional phttded sparse representation, we propose a novel sparsse-
tationmodeling in the unit of group instead of patch, aiming to exploit the local sparsity and the nonlesiatitagity of natural
images simultaneously in a unified framework. Each group is represented by the form of matrix, which is ¢@hposkcal
patches with similar structures. Thus, the proposed spgpsesentatiomodeling is named as grodgased sparsepresentation
(GSR). Moreoveran effective setadaptive dictionary learning methéat eachgroup with low complexitys desgnedrather than
dictionary learningrom natural images, enabling the proposed GSR mffiient and effective. This section will give detailed

description of GSR modeling, and elaborate theagdiptive dictionary learning technique.
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Figure 1: lllustratiors for thegroup constructiorExtract each gtchvectorX, from imagex . For eachX, , denoteSy, the set composed of

its ¢ bestmatched patches. Stack all the patcheSxp in theform of matrixto construct the grouglenoted byXg, .



A. Group Construction

Since the unit of our proposed sparse representation model is tiisugybseddn will give details to show how toonstruct it.

As shown in Fig. 1, first,iglide the imagex with sizeNinto n overlappedgatche of sizeExE and eaclpatchis denoted
by thevectorX, e R i.e.,.k=1,2,..n .

Then, for each patck, , denoted by small red squaneFig. 1, intheLs L training window(big blue squarg search itsc best
matchedpatche, which comprise the s&yx, . Here,Euclidean distances selected athe similarity criterion between different
patches

Next, all the patchein Sx, are stackedhto amatrix of size g x ¢, denotedby X, € R®*¢, which includes every patch in
Sx, as its columns, i.eXg, :{Xekml,xe o210 Xe kw(} . Thematrix X, containing all the patches with similstructures is

named as a groupnalogougo Eq. (3), we define
XGk - RGk (X)l (9)
whereRg () is actuallyan operator that extracthie group X, from x, and its transpose, denoted RY, (), can put back a

groupinto thek-th position in the reconstructed image, padded with zeros elsewhere.

By averaging all the groupthe recovery othe whole image& from {XGk} becomes
n n
X = Zklegk (XG k) / Zk:lRGTk (1Bs><c)l (10)

where./ stands for the elememtise division of wo vectorsand 15 «c is amatrix of sizeBs x C with all theelements being 1.

i = (1]

Figure 2: Comparison between patety and groupXg, .

Note that, in our paper, each ghaix, is represented as a vector, while each gnogip is represented as a matrix, as illustrated
in Fig. 2.According toabovedefinition, it is obvious to observe thaach patchx, corresponds to group X, . Onecan also see

that the construction ofs, explicitly exploits the selfsimilarity of natural images.
B. Groupbased Sparse Representation Modeling

To enforcethelocal sparsity andite nonlocalself-similarity of natural images simultanedy a unified frameworkwe propose

to sparsifynatural images in the domain gfoup. Therefore our proposed model is named as grbagedsparse representation



(GSR).The proposed GSR model ases that each grouys, can be accurately represented by a few atoms of -adafftive
learning dictionaryDg, .

In this subsectionD, = [dg, .1,ds,.2,-.-ds,=m | iS SUPpPOsed to be known. Note that each atlep; € R°s*¢ is a matrix of
the same size as the groXg, , andm is the number of atoms iDg, . Different from the dictionary in patebased sparse pe

(BgxC)xm

resentation, her®g, is of size(8,x0 xm, thatis,Dg, €R . How to learnDg, with low complexity will be given in
the next subsection.

Thus, some notations about GSR can be readily extended fromljaestett sparse reggentation. Specificallyhe sparse coding
process of each grouXs over Dg, is to seek a sparse vectoty, =[og,.q,06,.2,..-,06,.m] SUCh that
Xs, Nzizl%kyidskxi . For simplicity, we utilizethe expressia Dg g o representz:i:lozekxiolkai without confusion.
Note thatDg Qg is not a strict matrivector multiplication. It is also worth emphasizing that the sparse coding process of each
group under our ppposedDg, is quite efficient without iteration, which will be seen in the following section. Then the entire

image can be sparsely represented by the set of sparse{cmgkés in the group domain. Reconstrugi®r from the sparse

codes{ aw,} is expressed as:

def

X=Dgooe 2> " R (D) ./ D R ad), (11)

k

where D denotes the concatenation of B, , and o denotes the concatenation of ai, .
Accordingly, by considering the degraded version in Eq. (1), the proposed regulasiragenhimage restoration scheme via

GSR is formulated as

& —argin,, 0. o0, ~y[+ofec e

With dE; , the reconstructed image can be express@EbyDG o d% . Note that, in this papef,-normis exploited to masure
thereal sparsity ofo in the group domain in order to enhance the image restoration giaitgtheless:q. (12) is usually hard
to solve owing that,-norm optimization is norconvex. Thus, solvingq. (12) efficiently and effectively is one of our main
contributions, which will be seen in the following.

To understandGSR modelmore clearlyhere,we make acompaison betweertq. (12) andprevious patctbased sparse pe
resentatiorfor image restottion in Eq. (7) We can see thdifferences between Eq. (12) and Eq. (7@ in thedictionary andhe
unit of sparse representatiorhe advantages of Eq. (12) are mainly thiads. First, GSRadopts group athe unit of sparse
representation ansparséy represents the entire imagethe group domairSincethe group is composed of patches with similar

structures GSR exploits self-similarity explicitly in dictionary learning and sparse coding, which is more robuse#edtual



Secondrather than larning a generalictionary b for all patches in Eq. (7§ self-adaptive dictionaryDg, is designedor each
Xe, » Which is more effective. Third, asill be seenbelow, the proposedsdf-adaptive dictionary learningf D¢, is with low

complexity, whichdoesrit require high computationabmplexityto solve largescale optimizations

C. SeltAdaptive Group Dictionary Learning

In this subsection, we will show how tedrn the adaptive dictionaty, for each groupXe, . Note that, on one hand, we hope
that eachX, can be faithfully represented liy;, . On the other hand, it is pected that theepresentatiocoefficient vector of

Xe, Over Dg, is as sparse as possible. Like traditional patated dictionary learning algorithm in Eq. (8), the adaptie di

tionary learning of group cawe intuitively formulated as:

argmin Z:Zlnxek —Dx o, ,2: + a"232:1”06 K

, (13)
Dx { o} P

where p is 0 orl. Eq. (13) is a joint optimization problem Bfy and{ag,} , which can be solvedytalternatively optimizing
Dy and{og,} -

Nevertheless, we do not directly utilize Eq. (13) to ldaedictionary for each grouis, based on the following three iwo
siderations. First,@ving the joint optimization in Eqg. (13) requires much computational cost, especially in the unit of group.
Second, the learnt dictionary from Eq. (13) is actually adaptive for a given ixnaget adaptive for a groufg, , which means
that all the groups{XGk} are represented by the same diction@ry . Thats why the dictionary learnt by Eq. (13) here is denoted
by Dy , rather thaf{D¢,} . Finally, the dictionary learning process in Eq. (13) neglé#wsharacteristics of each grovfs, ,
which contains patches with similar patterns. That is to say it isguassaryo learn an ovecomplete dictioary, and it is even
possible to learn a dictionary by a more efficient and effective manner.

Similar to he idea of dictionary learnirgirategyusing similar patcheis [3], we propose to learn the adaptive dictionary,
for eachgroup X, directly from its estimatds, , because in practidbe original imageX is not available for learning all the
group®dictionaries{Dg,} . The estimatd's, will be naturally selected in the process of optimization, which will be explained
in the following sections.

After obtainingl's, , we then apply SVD td, that is,

e, =U Gkrcy GTk = Z:r]:lfyer @i (UG kinC%Tkooi)' (14)

where Vr, = [, 10 ¥e,02r Ve om) T, = diag(Yr,,) is a diagonal matrix with the elements gf  on its main diagonal,

andUg, i Vs, are the columns dd¢, andv,, , separatelyEach atom inDg, for groupXg, , is defined as



deooi - quOdVT

Gk i 1

i=12,..m, (15)

wheredg, . € R®*¢. Therefore, the ultimate adaptively learned dictionaryXgy is defined as

DGk = [deo'olldeoZ)Z! 7dG k&M ] (16)

According to the above éaitions, the main differenceetween [3andthis paper for dictionary learnirig thatwe utilize SVD
to learn an adaptive dictionary feach group, while3] utilizes PCA to learn an adaptive dictionary for each patch. The advantage
of our proposed dtionary learnindor each group is that it can guarantee all the patches in each group use the same dictionary and
share the same dictionary atoms, which isengffective and robust, whil&] just trainedthe dictionary for each patch ied
pendently usig its similar patchedt is clear to see that the proposed group dictionary learning iadaitive to each groug,
and is quite efficientrequiringonly one SVD for each group. In addition, owingutaitary property ofDg, , the sparse coding

process is not only efficient, but alstable and precisavhich will be seen in the next section.

D. Discussions

This subsection wilprovide the detailed discussions about the close relationships among the pr@®Retbdel, the group
sparsity model, and the low rank model. In fact, all the three models are involved sdthof similar patches to explahe
self-similarity of natural images.

As illustrated in Figl, the propose@SRmodel aims to adaptively sedietsparse representation of natural images in the unit of
the groupXg, . The group sparsity model imposes that similar patch&gjnshould share the same dictionarynedsts in their
spase decomposition. Thiew rank model hopes to find a low rank approximatiorXgf in order to find the robust estimate.
These three models seem different at first glance, since they start from different views. However, interestingly, @it tthe ai
particular dictionary learning method by SVD, one typ¢hefgroup sparsity model, and one type of the low rank model can be
derived from our propose@SR model, respectively. That means these three models are equivalent to some extent, which is of
greathelp to understand these three modtgisgrally. The details are given below.

As shown in Fig.1, for each groupXg, , given its noisy estimate;, , the proposedsSRmodel to estimat&s, such that
XG

. =Dg %, isformulated as

de, =argmin,_ 3|fe, —De 6 o+ efe ], - (17)

With (E;k , the reconstructed group is then expressedibky: DdeE i



AssumeXg, =DA , whereD €R®™ s the dictionary to sparsely represent all the patches; in andA €R™° denotes the
coefficient matrixHere, setD to beU s, in Eq. (L4), and in the light of althe definitionsabove, Eq. (T) is equivalent to the

following form:

£=argmin, 3o, oA [ +4h | (9

where|p|} . denotes ta number of the nonzero rows of a matrix and is a pseudo natrf2fd. With AE we get)l::sk — DAE.

Due to the definition of the group sparsity model [5], [12], [29], onesesnthat Eq.1@) is just the specialase of the group
sparsity model with the constraint of il ., matrix norm which differs from the previous group sparsity models with tie co
straint of the {; , matrix norm[12] [5] .

Similarly, define Yy, the vector composed of all the singular valueXef, i.e., Pyxek:[fyxekxl;VXGKXZ;"';’YXka‘m]V . Due to

Xs, = Dg, &, and the definitions ob¢, , we obtain

[[vxs, [}=rank(Xs,) = lloe, |l (19

where rank() represents the rank of a matrix. Therefore, the following equation can be derived frati)Eq. (

)Ek :argmlnxek %HXGk _er '2: + e{|7XGk “l’ (20)

which is just the low rank model with th&, norm of the vector composed of all the singular valueXQf and differs from

previouslow rank modes withthe ¢, normof thesingular valuesector [50] [51].

IV. OPTIMIZATION FOR GSRDRIVEN [, MINIMIZATION

In this sectionan efficient approach is developed to solve the propG&Rdriven [, minimizationfor image restoration i&q.

(12), which is one obur main contributions.

— _ . l N 2

d& =argmin,, 3[HD ¢ 006 [, + ofo |- 12)
Since (, minimization is norconvex and NFhard, the usual routine is to solve its optimal convexr@pmation, i.e.,(,

minimization, which has been proved thaidersome conditions(, minimizationis equivalent tol, minimizationin a technical

sense The [, minimization can be solved efficiently by some recent convex optimization algorithms, siteratige shritk-

agethresholding [16], [17], split Bregmaalgorithms[43]. Therefore, the straightforwardethod to solve Eq12) istranslatel

into solvingits {, convex form, that is



& —argnin,, 3|0 oex [+ of |, @

However,a fact that is often neglected fey some practical problems including imaigeerse problemsthe conditionsde-
scribing the equivalence df minimization and(, minimizationare not necessarily sdtisd. Therefore, this paper attempts to
exploit theframework of convex optimization algorithms to solve theninimization Experimentalresultsdemonstratghe
effectiveness and the convergence of our proposed approach. The superiority of solving Eq. (12) over solving Eq.H&d) is furt
discussed in the experimental section.

In this paper, wadopt the framework of split Bregman iteration (SBI) [43] to solve Eq. (12), which is verified to be fmore e
fective thanterative shrinkagéhresholding (IST) [16] in our experiments (See Section V for more details).

First of all, lets make a brief reew of SBI.The SBI algorithm wadir st proposed in43] and was shown to be powerful in for

solving various variational mode43], [44], [49]. Consider aonstrained optimization problem

min oy wfU)+dY, s.t.u=Gv, (22)

whereG i R" andf:R'- R, g:R"- R are convex functiong.he SBI to address problem (2®orks asfollows:

Algorithm 1 Split Bregman Iteration (SBI)

1. Sett = o, choosern>0,b,=o,u, 3V, o
2. Repeat

() — ; A Ko |P-
3. u® =argmin,f(u) %u-cv® b [;

4. v =argmin,g(v) U -Gv B’ |E,
s BB U )
6. t« t+1;

7. Until stopping criterion is satisfied

In SBI, the parametern is fixed to avoid the problem ofumerical instabilities instead of choosing a predefseglience that
tends to infinityas done in [30]According toSBI, the original minimization (22) is split into two spboblems.The rationale
behind isthateach sukproblemminimization may be much easignan the original problen2g).

Now, let us go back to Eq. (18nd point out how to appthe framework oSBI to solve itBy introducing a variableél , we first

transform Eq(12) into an equivalent constrained form,

Qiﬂ%”HU Y|, +efos |, stu =Dg oo . (23)



Define f(u) =4[Hu -y £, o(e)= ],

Then, nvoking SBI, Line 3 inAlgorithm 1 becomes:
ut :argumin%”H u-ylb Blu-Deodd BOIL (24)

Next, Line 4 inAlgorithm 1 becomes:
ot =argmin,_aoc|, + U Do B [[. (25)

According to Line 5 imAlgorithm 1, the update ob® is

bED =K) (U™ - Dg oal™D). (26)

Thus, by SBI, the minimization for Eq. (12) is transfornmd sohing two sub-problems, namelyl, oz subproblemsin the
following, we will provide the implementation details to obtain thefficient solutiors to eachsepaated sukproblem For sim-

plicity, the subscript is omitted without confusion.

A. U Sub-problem

Given ¢; , theu subproblem @&noted by Eq. @ is essentiallya minimization problem of strictly convex quadratic function, that

is
min, Q,(U)=min , 3|Hu -y ||Z+%”J -Dg 00y -b”i @7

Setting the gradient o, (U) to be zero givea closedsolution for Eq. (2), which can be expressed as

E=(HH 4#7) ", (28)

whereq =H'y %D, o +b), | is identity matrix.

As for image inpainting antinage deblurringdue to the special structure @f, Eqg. (8) can be computed efficiently without
computing the matrix inverse (more details can be found in [18]).

As for image compress® sensingCS)recovery,H is a random projection matrix withoapecial structureThus, it is too
costly tosolve Eq. (2) directly by Eq. (8). Here, to avoid computing the matiiwerse the gradient descent method is utitize

solve Eg. (2) by applying

E=u —d , (29



whered is the gradient direction of the objective functiQp(u) and 5 represents theptimal step. Therefore, solving

sub-problem for imageCSrecovery only requires computing the following equation iteratively

UE=u—nHHU H y+uu B o0, b)), (30)

whereH 'H andH Ty can be calculated before, making above computation more efficient.
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Figure 3: The distribution ofe® and its corresponding varianagar(€®”) for imageParrotsin the case of image deblurring at different-ite
ations. (at =3ard Var(€?)= 25.70, (b)t =5 andVar(€®)= 23.40, (c)t =7 andVar(e”)= 23.16.

B. o Sub-problem

Given U, according to Eq. (25)he o subproblem ca beformulatedas
. o 1 _ 2
mln%QZ(%) =min ?”DG oo - ”2 47671|Q(‘ ”o’ 31

wherer =u -b .
Note that it is difficult to solvé&q.(31) directly due to theomplicateddefinition of oy . Instead, we make some transformation.

Let X =D¢ 0 0% , then Eq. (31) equally becomes
min., Jx -1 [f Blee,. (32

By viewing r as some type of &y observation ok , we perform some experiments to investigate the statistiesof - r .
Here, we use imadearrotsasan example in the case of image deblurring, where the original image is first blurneifolomdolur
kernel and then is added by Gaussian white noise of standard deviation 0.5. At each itenagonan obtairr ® by
ro®=u® -ptd  Since the exaaminimizer of Eq. (32) is not available, we thepproximatex ® by the original image
without generality. Therefore, we are able to acquire the histografotEx® - r(® at each iteration. Fig. 3 shows the gi
tributions ofe® whent equals to 3, 5 and, respectively.

From Fig. 3, it is obvious to observe that the distributioe®f at each iteration is quite suitable to be characterizegkfy

eralized Gaussian distribution (GG[39] with zeromeanandvarianceVar(€") . The variancevar(€") can be estimated by



var(eV) =& [x® —r® Hz (33)

Fig. 3 also gives the corresponding estimated variances at different itertioth@rmore, owing that thesidualof images is
usuallyde-correlated, each element ef® can bemodeledindependently.

Accordingly, b enable solving Eq3@) tractable, in this paper, a reasonable assumption is made, with ewgn a closefbrm
solution of Eq. (32fan beobtained We supposé¢hat each element @&® follows an independent zeraean distribution with
variance Var(€") . It is worth emphasizing that the above assumptimes not need to be GaussianLaplacian, or GGIprocess,

which is more general. Bihis assumption, we can prove the following conclusion.

THEOREM 1. Let X,f | R, X¢, Jo, IR®°, and denote the error vector y=x -r and each eleent ofe by €(j),
j =1,...N. Assume tha€(j) is independent and comes from a distribution with zero meanarahce S°. Then, for anye>0,

, that is,

. . . . 2 n 2
we have the following property to describe the relationship bet\Hbeerf ||2 and Zk:l”XGk —To, |,

R A T G S o i B (34)

here p(g represents the probabilitgnd K =B Xc XN (See Appendix A for detailegdroof).

According toTheorem 1, there exist the following equation with very large probability (limited toat)each iteratiotx

el —r O = 550 e

(39)

Now letfs verify Eq. (35) by the above case of image deblurring. We can clearly see that the left hand of Eq. (3Byri€fl)st
defined in Eq. (33), withvar(e®) = 25.70, Var(e®) = 23.40, and Var(e"”) = 23.16, which is shown in Fig. 3. Atthe same time,
we can calculate the corresponding right hand of Eq. (35), denotedat{y) , with the same values df leading to
Var(e®) = 25.21, Var(e?) = 23.15, and Var(€y) = 23.07. Apparently, at each iteratiovar(e€") is very close tovVar(€?) ,
especially when is larger, which sufficientlyllustrates the validity ofour assumption.

Next, by hcorporatingeq. (35) into Eq. (32), it yields

ming, 3 ”XGk —Te, i

+ i e |,
= min% % k:l”XGk _er i +;;£Nz::l

_mln% Zk 1 2||XGk er i

(36)

where 7 = (a()/(/,zN) .



It is obvious to see that Eq. (36) can be efficiently minimized by sglmi subproblems for all the groupX, . Each group

based sulproblem is formulated as:

. 1 2
argmin, 3|Xe, —Ts, | +7]c,

° (37)

_ 1 2 '

=argming §||DGkO(Gk —s, ||F +T”Oé k”o
where D¢, is the seHadaptive learnedictionaryfrom ', using our proposed scheme described in subsection IIl.C. Obviously,
Eq. (37) can also be considered as the sparse coding problem. Now we will show that the accurate solution afaBdh€37)

achieved efficiently. With the definitions dfog, } and{~s,}, we getXs =Dg %, , s, =Dg, %, - Due to theunitary

property of D, , we have

2 2
“DGk%k _DG kfyer E :H% k _’yer 2' (38)
With Eq. (38), the sulproblem (37) is equivalent to
. 1 2
argmin, i”C"Gk —Yreell, —l—T”aGk o (39)
Therefore, the closefibrm solution of (39) is expressed as
de, = hard(7re, , 27)= Yo, oL abs ¥o), —2r , (40)

where hard() denotes the operator of hard thresholding andtands for the elememtise producbf two vectors. Thiprocess is

applied for alln groupsto achieve&; , Which is the final solution fog subproblemin Eq. (31).
C. Summary of Proposed Algorithm

So far, all issuesiithe process of handing thbove twaosubproblems have been solvdd.fact, weacquirethe efficient s-
lution for eachseparated suproblem which enablethe whole algorithm more efficient and effective light of all derivations

above,adetaileddescription ofthe proposed algorithm for image restoration usk®R is provided in Table. 1



Table 1: A Complete Description of Proposed GSR Modeling for Image Restoration

Input: the obsered image or measuremeytandthedegaded operaton
Initialization: t =0,0”=0,08 =0,U” Bs,C,3€ ;
Repeat
if H is mask operator
Updateu &9 by Eq. 28);
else ifH is blur operator
Updateu &9 by Eq. (28)
else ifH is random projection operator
Updateu &9 by Eq. (30)
end if
r =™ B = (@) [N) ;
for Each groupXe,
Congruct dictionaryD, by computing Eq. (16);
Reconstructd?t;k by computing Eq. (40);
endfor
UpdateD{™ by concatenang all D, ;
Update & by concatenang all &, ;
Updateb®?® by computing Eq. (26);
t« t+1;
Until maximumiteration number is reached

Output: Final restoredmage = Dg o dg, .

Figure 4: All experimental test images.



V. EXPERIMENTAL RESULTS

In this sectionextensiveexperimental results amnductedo verify the performance of the proposé&R for image restoration
applicationswhichincludeimage inpainting, image deblurring and image compressivarsgrecoveryThe parameter setting of
GSR is as followsthe size ofa group is set to b64x60, with B being 64 and C being60. The width of overlapping between
adjacenpatches is 4 pixels, leading teetrelationshipk =24 . Therangeof training wndow forconstructing groug.e.,LxL is
set to be @84 0. The parameterg and & are set accordingly for different image restoration i@ppibns, which will be given
below. All the experiments are performed in Matlah2Z0on aDell OPTIPLEX computewith Intel(R) Core(TM)2 Duo CPU
E8400processor3.00GHz),3.25G memory and Windows XRoperatingsystem.

To evaluate the quality dfiereconstructed imagen addition to PSNR (Peak Signal to Noise Ratio, unit: dB), which is used to
evaluate the objective image qualiyecently proposed powerfperceptual quality metrieSIM [45] is calculatedo evaluate the
visual quality.The higherFSIM value means the better visual qualfpr color imagesimage restoration operations are only
applied to théduminance componenéll the experimental test images are given in Figdde to the limit of space, onlyparts of
the experimental resultsare shown in this paper.Please enlarge and view the figures on the screen for better comparison.

Our Matlab code andll theexperimental results can be downloadéthewebsite http://idm.pku.edu.cn/staff/zhangjid®ER.

A. Imagelnpainting

In this subsetion, two interesting cases of image inpaintivith different masks are considered, i.e., image restor&tiom partial
random sampleand text removal. For image inpainting applicatipin= 0.0025and &= 0.082.

The propose@SRis compared witHfive recent representative methdds image inpaintingSKR (steeringkernel regression)
[6], NLTV [35], BPFA [48], HSR [10]and SAIST [5]. SKR [6] is a classic method that utilizes a steering kernel regression
framework to characterize locstructures for image restoration. NLT®Y] is an extension of traditional total variation (TV) with
a nonlocal weight function. BPFAL8] employs a truncated beBernoulli process to infer an appropriate dictionary foage
recoveryand exploitsthe spatial interrelationships within iragerythroughthe use of the Dirichlet and probitisk-breaking
processesHSR [L0] combines the strength of local and nonlocal sparse representations under a systematic framework called

Bayesian model averaging, chaexiting local smoothness and nonlocal -sgthilarity simultaneously.



Figure 5: Visual quality comparison of image restoration from partial random samples for colorBadigea From left to right and top to bottorite degraded
image with only 20% random samples available, original image, the recovered im&&R [l (PSNR=2.94B; FSIM=0.807), NLTV [35] (PSNR= 3.4aB;
FSIM=0.8372), BPFA[48] (PSNR=2570dB; FSIM=0.826), HSR[10] (PSNR=3.83B; FSIM=09273, SAIST [5] (PSNR=2.681B; FSIM =09485 and the
proposedSSR(PSNR=31.32dB; FSIM=0.998).

Figure 6: Visual quality comparison of image restoration from partial random samples for colortoage From left to right and top to bottortiie degraded
image with only 20% random samples available, original image, the recovered im&i&R [8) (PSNR=-30.40B; FSIM=09198, NLTV [35] (PSNR=31.13B;
FSIM=09093, BPFA[48] (PSNR=30.84B; FSIM=09111), HSR[10] (PSNR=32.351B; FSIM=09255, SAIST [5] (PSNR=35.731B; FSIM=0.9615 and the
proposed GSR (PSNR&®1dB; FSIM=0.%94).



Figure 7: Visual quality comparison in the case of text removal for color iBagkara From left to right and top to bottotite masked imageriginal image, the
recovered images bgKR[6] (PSNR=30.81dB; FSIM=09747), NLTV [35] (PSNR=32.6(iB; FSIM=09749, BPFA[48] (PSNR=34.281B; FSIM=09790, HSR
[10] (PSNR=38.861B; FSIM=09901), SAIST [5] (PSNR=39.0G1B; FSIM=09915 and the proposed GSR (PSNR-8&IB; FSIM=0.9936).

Figure 8: Visual quality comparison in the case of text removal for color inkBese From left to right and top to bottorite masked image®riginal image, the
recovered images KR [6] (PSNR-=38.651B; FSIM=09850, NLTV [35] (PSNR=38.44dB; FSIM=09820, BPFA[48] (PSNR-39.01B; FSIM=09818, HSR
[10] (PSNR=2.061B; FSIM=09913, SAIST[5] (PSNR=41.2@iB; FSIM=09893 and the proposed GSR (PSNR-51B; FSIM=0.9916).



