
 

  

 

Abstract 

Traditional patch-based sparse representation modeling of natural images usually suffer from two problems. First, it has to solve a 

large-scale optimization problem with high computational complexity in dictionary learning. Second, each patch is considered 

independently in dictionary learning and sparse coding, which ignores the relationship among patches, resulting in inaccurate 

sparse coding coefficients. In this paper, instead of using patch as the basic unit of sparse representation, we exploit the concept of 

group as the basic unit of sparse representation, which is composed of nonlocal patches with similar structures, and establish a 

novel sparse representation modeling of natural images, called group-based sparse representation (GSR). The proposed GSR is 

able to sparsely represent natural images in the domain of group, which enforces the intrinsic local sparsity and nonlocal 

self-similarity of images simultaneously in a unified framework. Moreover, an effective self-adaptive dictionary learning method 

for each group with low complexity is designed, rather than dictionary learning from natural images. To make GSR tractable and 

robust, a split Bregman based technique is developed to solve the proposed GSR-driven 0   minimization problem for image 

restoration efficiently. Extensive experiments on image inpainting, image deblurring and image compressive sensing recovery 

manifest that the proposed GSR modeling outperforms many current state-of-the-art schemes in both PSNR and visual perception. 
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I. INTRODUCTION 

mage restoration has been extensively studied in the past two decades [1]ï[20], whose purpose is to reconstruct the original high 

quality image x  from its degraded observed version y  . It is a typical ill-posed linear inverse problem and can be generally for-

mulated as: 

,Hy x n= +                                                                                                             (1) 

where ,yx  are lexicographically stacked representations of the original image and the degraded image, respectively, H  is a 

matrix representing a non-invertible linear degradation operator and n  is usually additive Gaussian white noise. When H  is a 

mask, that is, H  is a diagonal matrix whose diagonal entries are either 1 or 0, keeping or killing the corresponding pixels, the 

problem (1) becomes image inpainting [5], [6]; when H  is a blur operator, the problem (1) becomes image deblurring [9], [18]; 

when H  is a set of random projections, the problem (1) becomes compressive sensing (CS) [19], [42].  

To cope with the ill-posed nature of image restoration, image prior knowledge is usually employed for regularizing the solution 

to the following minimization problem [8]ï[18]: 

    ,
2

2
1
2argmin ( )x Hx y x- +ɚ                                                                     (2) 

where 
2

2
1
2 Hx y-  is the 2  data-fidelity term, ( )x  is called the regularization term denoting image prior and ɚ is the regulari-

zation parameter. Many optimization approaches for the above regularization-based image inverse problems have been developed 

[16]ï[18], [43]. 

Due to that image prior knowledge plays a critical role in the performance of image restoration algorithms, designing effective 

regularization terms to reflect the image priors is at the core of image restoration. Classical regularization terms, such as half 

quadrature formulation [21], Mumford-Shah (MS) model [22], and total variation (TV) models [1] [4], utilize local structural 

patterns and are built on the assumption that images are locally smooth except at edges. These regularization terms demonstrate 

high effectiveness in preserving edges and recovering smooth regions. However, they usually smear out image details and cannot 

deal well with fine structures. 

In the past several years, sparsity has been emerging as one of the most significant properties of natural images [23], [24] and the 

sparsity-based regularization has achieved great success in various image processing applications, such as denoising [25], 

deblurring [11], and super-resolution [26]. The sparse model assumes that each patch of an image can be accurately represented by 

a few elements from a basis set called a dictionary, which is learned from natural images. Compared with traditional analytical-
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ly-designed dictionaries, such as wavelets, curvelets, and bandlets, the learned dictionary enjoys the advantage of being better 

adapted to the images, thereby enhancing the sparsity and showing impressive performance improvement. However, there exist 

two main problems in the current patch-based sparse representation model. First, dictionary learning is a large-scale and highly 

non-convex problem, which often requires high computational complexity [24], [27]. Second, patch is the unit of sparse repre-

sentation, and each patch is usually considered independently in dictionary learning and sparse coding, which ignores the rela-

tionships between similar patches in essence, such as self-similarity. Moreover, with the learned dictionary, the actual sparse 

coding process is always calculated with relatively expensive nonlinear estimations, such as match pursuits [28], [38], which also 

may be unstable and imprecise due to the coherence of the dictionary [37]. 

Another alternative significant property exhibited in natural images is the well-known nonlocal self-similarity, which depicts the 

repetitiveness of higher level patterns (e.g., textures and structures) globally positioned in images. Inspired by the success of 

nonlocal means (NLM) denoising filter [8], a series of nonlocal regularization terms for inverse problems exploiting nonlocal 

self-similarity property of natural images are emerging [32]ï[36]. Due to the utilization of self-similarity prior by adaptive non-

local graph, nonlocal regularization terms produce superior results over the local ones, with sharper image edges and more image 

details [33], [36]. Nonetheless, there are still plenty of image details and structures that cannot be recovered accurately. One of the 

reasons is that the weighted graphs adopted by the above nonlocal regularization terms inevitably give rise to disturbance and 

inaccuracy, due to the inaccurate weights [35].  

In recent works, the sparsity and the self-similarity of natural images are usually combined to achieve better performance. In 

[11], sparsity and self-similarity are separately characterized by two regularization terms, which are incorporated together into the 

final cost functional of image restoration solution to enhance the image quality. In [12], simultaneous sparse coding is utilized to 

impose that similar patches should share the same dictionary elements in their sparse decomposition, which acquired impressive 

denoising and demosaicking results. In [15], a nonlocall y centralized sparse representation (NCSR) model is proposed, which first 

obtains good estimates of the sparse coding coefficients of the original image by the principle of NLM in the domain of sparse 

coding coefficients, and then centralizes the sparse coding coefficients of the observed image to those estimates to improve the 

performance of sparse representation based image restoration. 

Lately, low-rank modeling based approaches have also achieved great success in image or video restoration. To remove the 

defects in a video, unreliable pixels in the video are first detected and labeled as missing. Similar patches are grouped such that the 

patches in each group share similar underlying structure and form a low-rank matrix approximately. Finally, the matrix completion 

is carried out on each patch group to restore the image [50] [51]. In [5], a low-rank approach toward modeling nonlocal similarity 



 

denoted by SAIST is proposed, which not only provides a conceptually simple interpretation for simultaneous sparse coding [12] 

from a bilateral variance estimation perspective, but also achieves highly competent performance to several state-of-the-art 

methods. 

In this paper, instead of using patch as the basic unit of sparse representation, we exploit the concept of group as the basic unit of 

sparse representation, and establish a novel sparse representation modeling of natural images, called group-based sparse repre-

sentation (GSR). Compared with traditional patch-based sparse representation, the contributions of our proposed GSR modeling 

are mainly three folds. First, GSR explicitly and effectively characterizes the intrinsic local sparsity and nonlocal self-similarity of 

natural images simultaneously in a unified framework, which adaptively sparsifies the natural image in the domain of group. 

Second, an effective self-adaptive group dictionary learning method with low complexity is designed, rather than dictionary 

learning from natural images. Third, an efficient split Bregman based iterative algorithm is developed to solve the proposed 

GSR-driven 0  minimization problem for image restoration. Experimental results on three applications: image inpainting, 

deblurring and image CS recovery have shown that the proposed GSR model outperforms many current state-of-the-art schemes. 

Part of our previous work for image CS recovery via GSR has been presented in [47]. 

The remainder of this paper is organized as follows. Traditional patch-based sparse representation is introduced in Section II. 

Section III elaborates the design of group-based sparse representation (GSR) modeling, and discusses the close relationships 

among the GSR model, the group sparsity model and the low rank model. Section IV proposes a new objective functional formed 

by our proposed GSR, and gives the implementation details of solving optimization problem. Extensive experimental results are 

reported in Section V. In Section VI , we summarize this paper. 

II. TRADITIONAL PATCH-BASED SPARSE REPRESENTATION 

In literature, the basic unit of sparse representation for natural images is patch [24]ï[26]. Mathematically, denote by 
Nx and 

kx Bs

 
the vector representations of the original image and an image patch of size B Bs s  at location , 1, 2,...,k  k = n , 

where N  and sB  are the size of the whole image vector and each image patch vector, respectively, and n  is the number of image 

patches. Then we have 

,Rx xk k( )                                                                                            (3) 

where Rk ( )  is an operator that extracts the patch kx  from the image x , and its transpose, denoted by 
TRk ( ) , is able to put back 

a patch
 
into the k-th position in the reconstructed image, padded with zeros elsewhere. Considering that patches are usually 

overlapped, the recovery of x  from xk{ }  becomes 



 

,
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BR R 1xx k k kk k

n n
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( ) ( )./

                                                                 
 (4) 

where the notation /.  stands for the element-wise division of two vectors, and 
sB1  is a vector of size sB  with all its elements 

being 1. Eq. (4) indicates nothing but an abstraction strategy of averaging all the overlapped patches. 

For a given dictionary s MBD ( M  is the number of atoms in D ), the sparse coding process of each patch kx  over D  is to 

find a sparse vector M
k  (i.e., most of the coefficients in k  are zero or close to zero) such that k kDx . Then the 

entire image can be sparsely represented by the set of sparse codes k{ } . In practice, the sparse coding problem of kx  over D  is 

usually cast as 

,
2

2
1
2argmin kk p

Dx ɚ
                                                                

 (5) 

where ɚ is a constant, and p is 0 or 1. If p = 0, that means the sparsity is strictly measured by the 0 -norm of k , which counts the 

nonzero elements in k . Nonetheless, since the problem of 0 -norm optimization is non-convex and usually NP-hard, it is often 

sub-optionally solved by greedy algorithms, e.g., orthogonal matching pursuit (OMP) [28]. Alternatively, if p = 1, the 0 -norm 

minimization is approximated by the convex 1 -norm, which can be efficiently solved by some recent large-scale tools [16]ï[18], 

[38], [43]. 

Similar to Eq. (4), reconstructing x  from its sparse codes k{ }
 
is formulated: 

,
s

def T T
BD DR R 1x k k kk k

n n

1 1
( ) ( )./                                                   (6) 

where  denotes the concatenation of all k , that is,  , ,..., TT T T
n1 2[ ] . The purpose of introducing the notation  is to 

exploit D to make the expression of   
s

T T
BDR R 1k k kk k

n n

1 1
( ) ( )./  more convenient. 

Now, considering the degraded version in Eq. (1), the regularization-based image restoration scheme utilizing traditional 

patch-based sparse representation model is formulated as 

Ĕ ,ɚHD y
p

2

2
1
2argmin

 

                                                      (7) 

where ɚ is the regularization parameter, and p  is 0 or 1. With Ĕ, the reconstructed image can be expressed by ĔĔ Dx . 

The heart of the sparse representation modeling lies in the choice of dictionary D . In other words, how to seek the best domain 

to sparsify a given image? Much effort has been devoted to learning a redundant dictionary from a set of training example image 

patches. To be concrete, given a set of training image patches 1 2
, ,...,

J
X x x x[ ] , where J is the number of training image 

patches, the goal of dictionary learning is to jointly optimize the dictionary D  and the representation coefficients matrix 



 

1 2
[ ], ,...,

J  such that Dx k k
 and k p L , where p  is 0 or 1. This can be formulated by the following mini-

mization problem: 

,

ĔĔ, , s.t. Lk

J

k k pk
k.

D
D Dx 2

21
( ) argmin

                                                

(8) 

Apparently, the above minimization problem in Eq. (8) is large-scale and highly non-convex even when p is 1. To make it 

tractable and solvable, some approximation approaches, including MOD [27] and K-SVD [24], have been proposed to optimize D  

and alternatively, leading to many state-of-the-art results in image processing. However, these approximation approaches for 

dictionary learning inevitably require high computational complexity.  

Apart from high computational complexity, from Eq. (5) and Eq. (8), it can be noticed that each patch is actually considered 

independently in dictionary learning and sparse coding, which ignores the relationships between similar patches in essence, such as 

self-similarity [4], [11].  

III.  GROUP-BASED SPARSE REPRESENTATION (GSR) 

In this paper, to rectify the above problems of traditional patch-based sparse representation, we propose a novel sparse represen-

tation modeling in the unit of group instead of patch, aiming to exploit the local sparsity and the nonlocal self-similarity of natural 

images simultaneously in a unified framework. Each group is represented by the form of matrix, which is composed of nonlocal 

patches with similar structures. Thus, the proposed sparse representation modeling is named as group-based sparse representation 

(GSR). Moreover, an effective self-adaptive dictionary learning method for each group with low complexity is designed rather than 

dictionary learning from natural images, enabling the proposed GSR more efficient and effective. This section will give detailed 

description of GSR modeling, and elaborate the self-adaptive dictionary learning technique. 

 

 

 

Figure 1: Illustrations for the group construction. Extract each patch vector 
k

x
 
from image x . For each 

k
x , denote xS k  the set composed of 

its c  best matched patches. Stack all the patches in xS k  
in the form of matrix to construct the group, denoted by Gx k . 



 

A. Group Construction 

Since the unit of our proposed sparse representation model is group, this subsection will give details to show how to construct it.     

As shown in Fig. 1, first, divide the image x  with size N into n  overlapped patches of size B Bs s  
and each patch is denoted 

by the vector sBx k , i.e., 1, 2, ...,k = n .  

Then, for each patch x k
, denoted by small red square in Fig. 1, in the ³L L  training window (big blue square), search its c  best 

matched patches, which comprise the set kxS . Here, Euclidean distance is selected as the similarity criterion between different 

patches. 

Next, all the patches in kxS
 
are stacked into a matrix of size 

sB c , denoted by sB
Gx k

c , which includes every patch in 

kxS  as its columns, i.e., 2, , ,... cG G G Gx x x x
k k k k1{ } . The matrix Gx

k
 containing all the patches with similar structures is 

named as a group. Analogous to Eq. (3), we define 

G GR xx ,k k ( )                                                                                       (9) 

where GR
k
( )  is actually an operator that extracts the group kGx  from x , and its transpose, denoted by 

T
GR k ( ) , can put back a 

group
 
into the k-th position in the reconstructed image, padded with zeros elsewhere.  

By averaging all the groups, the recovery of the whole image x  from Gx
k

{ }  becomes 

1 1
( ) ( )./k k k ck k

n n
̆G G GR R 1xx s

T T
B

                                                    
 (10) 

where /.  stands for the element-wise division of two vectors and 
sB1 c  is a matrix of size sB c  with all the elements being 1.  

 

Figure 2: Comparison between patch x k  
and group kGx . 

Note that, in our paper, each patch x k  is represented as a vector, while each group kGx  is represented as a matrix, as illustrated 

in Fig. 2. According to above definition, it is obvious to observe that each patch x k  corresponds to a group kGx . One can also see 

that the construction of kGx  explicitly exploits the self-similarity of natural images. 

B. Group-based Sparse Representation Modeling 

To enforce the local sparsity and the nonlocal self-similarity of natural images simultaneously in a unified framework, we propose 

to sparsify natural images in the domain of group. Therefore, our proposed model is named as group-based sparse representation 



 

(GSR). The proposed GSR model assumes that each group 
kGx
 
can be accurately represented by a few atoms of a self-adaptive 

learning dictionary 
kGD .  

In this subsection, [ , ,..., ]G G GGD d d d
k k kk m1 2  

is supposed to be known. Note that each atom s cB
Gd k i  

is a matrix of 

the same size as the group kGx , and m is the number of atoms in 
kGD . Different from the dictionary in patch-based sparse rep-

resentation, here 
kGD

 
is of size 

S
cB m( ) , that is, S cB

GD
k

m( )
. How to learn 

kGD  with low complexity will be given in 

the next subsection.  

Thus, some notations about GSR can be readily extended from patch-based sparse representation. Specifically, the sparse coding 

process of each group kGx  over 
kGD  is to seek a sparse vector [ , ,..., ]G G GG k k kk m1 2 such that 

G G Gdx
k k ki ii

m

1
. For simplicity, we utilize the expression G GD

k k
 to represent G Gd

k ki ii

m

1
 without confusion. 

Note that G GD
k k

 is not a strict matrix-vector multiplication. It is also worth emphasizing that the sparse coding process of each 

group under our proposed kGD  is quite efficient without iteration, which will be seen in the following section. Then the entire 

image can be sparsely represented by the set of sparse codes { }
kG  in the group domain. Reconstructing x  from the sparse 

codes { }
kG

 
is expressed as:

 
 

,
s

def T T
BG G G G G GD R RD 1x

k k k k ck k

n n

1 1
( ) ( )./

                                               
(11) 

where GD  denotes the concatenation of all kGD , and G  denotes the concatenation of all kG . 

Accordingly, by considering the degraded version in Eq. (1), the proposed regularization-based image restoration scheme via 

GSR is formulated as 

0
Ĕ .ɚG G

G
G GHD y

2

2
1
2argmin                                                    (12)

 

With ĔG , the reconstructed image can be expressed by ĔĔ G GDx . Note that, in this paper, 0 -norm is exploited to measure 

the real sparsity of G  in the group domain in order to enhance the image restoration quality. Nonetheless, Eq. (12) is usually hard 

to solve owing that 0 -norm optimization is non-convex. Thus, solving Eq. (12) efficiently and effectively is one of our main 

contributions, which will be seen in the following.  

To understand GSR model more clearly, here, we make a comparison between Eq. (12) and previous patch-based sparse rep-

resentation for image restoration in Eq. (7). We can see the differences between Eq. (12) and Eq. (7) lie in the dictionary and the 

unit of sparse representation. The advantages of Eq. (12) are mainly three-folds. First, GSR adopts group as the unit of sparse 

representation and sparsely represents the entire image in the group domain. Since the group is composed of patches with similar 

structures, GSR exploits self-similarity explicitly  in dictionary learning and sparse coding, which is more robust and effectual. 



 

Second, rather than learning a general dictionary D  for all patches in Eq. (7), a self-adaptive dictionary 
kGD

 
is designed for each 

kGx , which is more effective. Third, as will be seen below, the proposed self -adaptive dictionary learning of 
kGD  is with low 

complexity, which doesnôt require high computational complexity to solve large-scale optimizations. 

C. Self-Adaptive Group Dictionary Learning  

In this subsection, we will show how to learn the adaptive dictionary 
kGD  for each group kGx . Note that, on one hand, we hope 

that each kGx  can be faithfully represented by 
kGD . On the other hand, it is expected that the representation coefficient vector of 

kGx
 
over 

kGD  is as sparse as possible.  Like traditional patch-based dictionary learning algorithm in Eq. (8), the adaptive dic-

tionary learning of group can be intuitively formulated as: 

,

,ɚ
G

G G G

x
x

D
Dx

k k k

k

Fk k

n n

p

2

1 1
{ }

argmin                                                   (13) 

where  p  is 0 or 1. Eq. (13) is a joint optimization problem of xD  and { }kG , which can be solved by alternatively optimizing 

xD  and { }kG .  

Nevertheless, we do not directly utilize Eq. (13) to learn the dictionary for each group kGx  based on the following three con-

siderations. First, solving the joint optimization in Eq. (13) requires much computational cost, especially in the unit of group. 

Second, the learnt dictionary from Eq. (13) is actually adaptive for a given image x , not adaptive for a group kGx , which means 

that all the groups { }
kGx

 
are represented by the same dictionary xD . Thatôs why the dictionary learnt by Eq. (13) here is denoted 

by xD , rather than { }kGD . Finally, the dictionary learning process in Eq. (13) neglects the characteristics of each group kGx , 

which contains patches with similar patterns. That is to say it is not necessary to learn an over-complete dictionary, and it is even 

possible to learn a dictionary by a more efficient and effective manner. 

Similar to the idea of dictionary learning strategy using similar patches in [3], we propose to learn the adaptive dictionary kGD  

for each group kGx  directly from its estimate kGr , because in practice the original image x  is not available for learning all the 

groupsô dictionaries { }kGD  . The estimate kGr
 
will be naturally selected in the process of optimization, which will be explained 

in the following sections. 

After obtaining kGr , we then apply SVD to it, that is, 

1
,T T

GG G G GG GrU V u vr k k k kk kk

m
i ii i

( )                                                      (14) 

where 
2

; ;...;
mG G G Gr r r r ̆

k k k k1
[ ]  GG rk k

diag( )  is a diagonal matrix with the elements of 
Gr k

 on its main diagonal, 

and ,G Gu vk ki i  are the columns of GU k  and GV
k

, separately. Each atom in kGD  for group kGx , is defined as 



 

1, 2, ...,,  T
G G Gd u vk k ki i i mi ,                                                                     (15) 

where s cB
Gd k i . Therefore, the ultimate adaptively learned dictionary for kGx  is defined as 

 [ , ,..., ]G G GGD d d dk k kk m1 2 .                                                                      (16) 

According to the above definitions, the main difference between [3] and this paper for dictionary learning is that we utilize SVD 

to learn an adaptive dictionary for each group, while [3] utilizes PCA to learn an adaptive dictionary for each patch. The advantage 

of our proposed dictionary learning for each group is that it can guarantee all the patches in each group use the same dictionary and 

share the same dictionary atoms, which is more effective and robust, while [3] just trained the dictionary for each patch inde-

pendently using its similar patches. It is clear to see that the proposed group dictionary learning is self-adaptive to each group kGx

and is quite efficient, requiring only one SVD for each group. In addition, owing to unitary property of kGD , the sparse coding 

process is not only efficient, but also stable and precise, which will be seen in the next section. 

D. Discussions 

This subsection will provide the detailed discussions about the close relationships among the proposed GSR model, the group 

sparsity model, and the low rank model. In fact, all the three models are involved with a set of similar patches to exploit the 

self-similarity of natural images.  

As illustrated in Fig. 1, the proposed GSR model aims to adaptively seek the sparse representation of natural images in the unit of 

the group Gx k . The group sparsity model imposes that similar patches in Gx k  
should share the same dictionary elements in their 

sparse decomposition. The low rank model hopes to find a low rank approximation of Gx k  
in order to find the robust estimate. 

These three models seem different at first glance, since they start from different views. However, interestingly, with the aid of the 

particular dictionary learning method by SVD, one type of the group sparsity model, and one type of the low rank model can be 

derived from our proposed GSR model, respectively. That means these three models are equivalent to some extent, which is of 

great help to understand these three models integrally. The details are given below. 

As shown in Fig. 1, for each group Gx k , given its noisy estimate Gr k , the proposed GSR model to estimate Gx k  such that 

G G GDx
k k k  

is formulated as  

Ĕ .ɚ
G

G G G G GDr
k Fk k k k k

2

0

1
2argmin                                               (17) 

With ĔGk , the reconstructed group is then expressed by ĔĔ
G G GDx

k k k
. 



 

Assume G DAx k , where s mBD  is the dictionary to sparsely represent all the patches in Gx
k

, and 
m cA  denotes the 

coefficient matrix. Here, set D  to be GU k  in Eq. (14), and in the light of all the definitions above, Eq. (17) is equivalent to the 

following form: 

,

Ĕ ,ɚGAA DA Ar
Fk

2

0

1
2argmin                                                             (18) 

where ,|| ||0  denotes the number of the nonzero rows of a matrix and is a pseudo norm [12] [29]. With ĔA , we get ĔĔG DAx k .  

Due to the definition of the group sparsity model [5], [12],  [29], one can see that Eq. (18) is just the special case of the group 

sparsity model with the constraint of the 0,  matrix norm, which differs from the previous group sparsity models with the con-

straint of  the 1,2  matrix norm [12] [5] . 

Similarly, define Gx k
 the vector composed of all the singular values of kGx , i.e., 

2
; ;...;

mG G G Gx x x x ̆
k k k k1

[ ] . Due to 

G G GDx
k k k  

and the definitions of GD
k

, we obtain 

0 0
|| || || || ,

G G Gx x kk krank( )
                                                              

(19) 

where rank( )  represents the rank of a matrix. Therefore, the following equation can be derived from Eq. (17): 

0
,Ĕ || ||

F
ɚG GG

G Gx xx rx k k k kk

21
2argmin

 
                                             (20) 

which is just the low rank model with the 0  
norm of the vector composed of all the singular values of kGx

 
and differs from 

previous low rank models with the 1  
norm of the singular values vector [50] [51]. 

IV.  OPTIMIZATION FOR GSR-DRIVEN
 0  

MINIMIZATION  

In this section, an efficient approach is developed to solve the proposed GSR-driven 0  minimization for image restoration in Eq. 

(12), which is one of our main contributions. 

0
Ĕ .ɚ

G
G GG GHD y

2

2
1
2argmin

                                                  
(12) 

Since 0  minimization is non-convex and NP-hard, the usual routine is to solve its optimal convex approximation, i.e., 1  

minimization, which has been proved that, under some conditions, 1  minimization is equivalent to 0  minimization in a technical 

sense. The 1  minimization can be solved efficiently by some recent convex optimization algorithms, such as iterative shrink-

age/thresholding [16], [17], split Bregman algorithms [43]. Therefore, the straightforward method to solve Eq. (12) is translated 

into solving its 1  convex form, that is  



 

1
Ĕ .ɚ

G
G GG GHD y

2

2
1
2argmin                                                  (21) 

However, a fact that is often neglected is, for some practical problems including image inverse problems, the conditions de-

scribing the equivalence of 0  minimization and 1  minimization are not necessarily satisfied. Therefore, this paper attempts to 

exploit the framework of convex optimization algorithms to solve the 0  minimization. Experimental results demonstrate the 

effectiveness and the convergence of our proposed approach. The superiority of solving Eq. (12) over solving Eq. (21) is further 

discussed in the experimental section.  

In this paper, we adopt the framework of split Bregman iteration (SBI) [43] to solve Eq. (12), which is verified to be more ef-

fective than iterative shrinkage/thresholding (IST) [16] in our experiments (See Section V for more details).  

First of all, letôs make a brief review of SBI. The SBI algorithm was first proposed in [43] and was shown to be powerful in for 

solving various variational models [43], [44], [49]. Consider a constrained optimization problem 

,
s. t.   ,,  min ( ) ( )N M f g

u v
v u Gvu

Í Í
=+                                                            (22)

 

where M NG ³Í  and : ,  :N Mf g   are convex functions. The SBI to address problem (22) works as follows: 

Algorithm 1 Split Bregman Iteration (SBI) 

1.    Set 0t = , choose 0,m>
0 0 0

, ,0 0 0b u v= = =. 

2.    Repeat 

3.     ;
2

2

( +1) ( ) ( )

2argmin ( )t t tfuu Gvu u bm
- -= +  

4.        ;
2

2

( +1) ( +1) ( )

2argmin ( )t t tgv Gv v u v bm
- -= +  

5.    ;( +1) ( ) ( +1) ( +1)( )t t t tGb b u v= - -  

6.    ;+1t t«  

7.      Until  stopping criterion is satisfied 

In SBI, the parameter m is fixed to avoid the problem of numerical instabilities instead of choosing a predefined sequence that 

tends to infinity as done in [30]. According to SBI, the original minimization (22) is split into two sub-problems. The rationale 

behind is that each sub-problem minimization may be much easier than the original problem (22).  

Now, let us go back to Eq. (12) and point out how to apply the framework of SBI to solve it. By introducing a variable u , we first 

transform Eq. (12) into an equivalent constrained form, 

0,
,  s.t. .

2

2
1
2min

G

G GG
u

H Du y uɚ                                                   (23) 



 

Define   ,
2

2
1
2( )f Hu yu -=  .

0
( ) = g G Gɚ  

Then, invoking SBI, Line 3 in Algorithm 1 becomes: 

.( +1) ( ) ( )2 2

2 2
1
2 2argmint t t

G G
u

H Du yu u bm
- - -= +                                              (24) 

Next, Line 4 in Algorithm 1  becomes: 

.
2( +1) ( +1) ( )

0 22argmint t t

G
G G G GDu bɚ

m
+ - -=

                                      
(25) 

According to Line 5 in Algorithm 1 , the update of b t( )  is 

.( +1)( +1) ( ) ( +1)( )tt t t
G GDb b u -= -                                                 (26) 

Thus, by SBI, the minimization for Eq. (12) is transformed into solving two sub-problems, namely,, Gu  sub-problems. In the 

following, we will provide the implementation details to obtain the efficient solutions to each separated sub-problem. For sim-

plicity, the subscript t  is omitted without confusion. 

A. u   Sub-problem 

Given G , the u  sub-problem denoted by Eq. (24) is essentially a minimization problem of strictly convex quadratic function, that 

is 

1
+ .

22

2 2

1
2 2min ( ) = min - - -G Gu u DHu y u buQ

                                            
(27) 

Setting the gradient of 
1( )uQ

 
to be zero gives a closed solution for Eq. (27), which can be expressed as 

                                   Ĕ ,1( )TH H I qu m -= +                                                                                (28) 

where + ,( )T
G GH Dq y b m= + I is identity matrix.  

As for image inpainting and image deblurring, due to the special structure of H , Eq. (28) can be computed efficiently without 

computing the matrix inverse (more details can be found in [18]).  

As for image compressive sensing (CS) recovery, H  is a random projection matrix without special structure. Thus, it is too 

costly to solve Eq. (27) directly by Eq. (28). Here, to avoid computing the matrix inverse, the gradient descent method is utilized to 

solve Eq. (27) by applying 

Ĕu u d ,                                                                                   (29) 



 

where d  is the gradient direction of the objective function 
1
( )uQ and  represents the optimal step. Therefore, solving u  

sub-problem for image CS recovery only requires computing the following equation iteratively 

Ĕ ,
T T

G GH H H Dyu u u u b( ( ))
                                       

 (30) 

where H H
T

 and H yT

 can be calculated before, making above computation more efficient. 

 
(a)                                                                           (b)                                                                          (c) 

Figure 3: The distribution of ( )te  and its corresponding variance 
( )Var( )te  for image Parrots in the case of image deblurring at different iter-

ations. (a) t = 3 and 25.70 (3)V =ar( )e ; (b) t = 5 and 23.40 (5)V =ar( )e ; (c) t = 7 and 23.16 (7)V =ar( )e . 

B. G   Sub-problem 

Given u , according to Eq. (25), the G  sub-problem can be formulated as 

2
1 ɚQ

G G
G G G GD r

2

2 02min ( ) min m= - + ,                                                (31) 

where r u b-= . 

Note that it is difficult to solve Eq. (31) directly due to the complicated definition of G . Instead, we make some transformation. 

Let G GDx= , then Eq. (31) equally becomes 

1 2

2 02min
G

Gx r m- +ɚ .                                                                         (32) 

By viewing r  as some type of noisy observation of x , we perform some experiments to investigate the statistics of e x r-= . 

Here, we use image Parrots as an example in the case of image deblurring, where the original image is first blurred by uniform blur 

kernel and then is added by Gaussian white noise of standard deviation 0.5. At each iteration t, we can obtain r t( )  by 

-r u bt t t( ) ( ) ( 1)-= . Since the exact minimizer of Eq. (32) is not available, we then approximate x t( )
 by the original image 

without generality. Therefore, we are able to acquire the histogram of e x rt t t( ) ( ) ( )-=  at each iteration t. Fig. 3 shows the dis-

tributions of e t( )  when t equals to 3, 5 and 7, respectively. 

From Fig. 3, it is obvious to observe that the distribution of ( )te  at each iteration is quite suitable to be characterized by gen-

eralized Gaussian distribution (GGD) [39] with zero-mean and variance 
( )Var( )te . The variance 

( )Var( )te  can be estimated by 
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1Var( ) .                                                                          (33) 

Fig. 3 also gives the corresponding estimated variances at different iterations. Furthermore, owing that the residual of images is 

usually de-correlated, each element of ( )te  can be modeled independently.  

Accordingly, to enable solving Eq. (32) tractable, in this paper, a reasonable assumption is made, with which even a closed-form 

solution of Eq. (32) can be obtained. We suppose that each element of ( )te  follows an independent zero-mean distribution with 

variance 
( )Var( )te . It is worth emphasizing that the above assumption does not need to be Gaussian, or Laplacian, or GGD process, 

which is more general. By this assumption, we can prove the following conclusion. 

THEOREM  1. Let , , ,G Gx r x rk k

N B cs³Í Í , and denote the error vector by -=x re and each element of e  by ,( )je  

,...,1 N.j =  Assume that ( )je
 
is independent and comes from a distribution with zero mean and variance .2s  Then, for any 0>e , 

we have the following property to describe the relationship between 
2

2
x r-  and 

F
G Gx r

k kk

n 2

1
, that is, 

1 1 ,
22

2 1

lim
- - - 1| |{ }N

K
k kk

n

N KP G Gx r x r
F

                                             

 (34) 

here ( )ÖP  represents the probability and BK ncs  (See Appendix A for detailed proof). 

According to Theorem 1, there exists the following equation with very large probability (limited to 1) at each iteration t: 

G Gx r x r
k k

t tt t

k F

n

N K

22 ( ) ( )( ) ( )

12

1 1
.                                                        (35) 

Now letôs verify Eq. (35) by the above case of image deblurring. We can clearly see that the left hand of Eq. (35) is just 
( )Var( )te

defined in Eq. (33), with 25.70 (3) =Var( )e , 23.40 (5) =Var( )e , and 23.16 (7) =Var( )e , which is shown in Fig. 3.  At the same time, 

we can calculate the corresponding right hand of Eq. (35), denoted by 
( )Var( )t
Ge , with the same values of t, leading to 

25.21 (3) =Var( )Ge , 23.15 (5) =Var( )Ge , and 23.07 (7) =Var( )Ge . Apparently, at each iteration, 
( )Var( )te  is very close to 

( )Var( )t
Ge , 

especially when t is larger, which sufficiently illustrates the validity of our assumption. 

Next, by incorporating Eq. (35) into Eq. (32), it yields 
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(36) 

where ɚK N( ) ( ) .  



 

It is obvious to see that Eq. (36) can be efficiently minimized by solving n  sub-problems for all the groups 
kGx . Each group 

based sub-problem is formulated as: 

G
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x r
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F
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0
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1

1

argmin

argmin
.                                                     (37) 

where 
kGD  is the self-adaptive learned dictionary from 

kGr  using our proposed scheme described in subsection III.C. Obviously, 

Eq. (37) can also be considered as the sparse coding problem. Now we will show that the accurate solution of Eq. (37) can be 

achieved efficiently. With the definitions of { }
kG and ,rG k

{ }  we get ,
k k kG G GDx  G G G rDr

k k k
. Due to the unitary 

property of GD
k

, we have 

 
G GG G G Gr rD D

k k k kk kF

2 2

2
.                                                                (38) 

With Eq. (38), the sub-problem (37) is equivalent to 

G GG Gr
k

k kk

2

2 02
1argmin .                                                                 (39) 

Therefore, the closed-form solution of (39) is expressed as 

Ĕ , 1 ,G G GG r r rk k kk
2 2hard abs( ) = ( ( ) )

                                                 
(40) 

where ( )hard  denotes the operator of hard thresholding and  stands for the element-wise product of two vectors. This process is 

applied for all n  groups to achieve ĔG , which is the final solution for G  sub-problem in Eq. (31). 

C. Summary of Proposed Algorithm 

So far, all issues in the process of handing the above two sub-problems have been solved. In fact, we acquire the efficient so-

lution for each separated sub-problem, which enables the whole algorithm more efficient and effective. In light of all derivations 

above, a detailed description of the proposed algorithm for image restoration using GSR is provided in Table 1.  

 

 

 

 

 



 

 

 

Table 1: A Complete Description of Proposed GSR Modeling for Image Restoration 

Input:  the observed image or measurement y and the degraded operator H  

Initialization:  0, = =, , , , , , ,(0) (0)(0)

st = G0 0b u c ɚɛB ;  

Repeat  

      if H  is mask operator 

Update ( +1)tu  by Eq. (28); 

else if H  is blur operator 

Update ( +1)tu  by Eq. (28); 

else if H  is random projection operator 

Update ( +1)tu  by Eq. (30); 

end if 

;( +1) ( +1) ( )t t tr u b= - ;ɚK N( ) ( )  

for Each group 
kGx  

Construct dictionary 
kGD  by computing Eq. (16); 

Reconstruct Ĕ
kG by computing Eq. (40); 

end for 

Update 
( +1)t
GD   by concatenating all 

kGD ; 

Update Ĕ
( +1)t
G   by concatenating all Ĕ

kG ; 

Update ( +1)tb  by computing Eq. (26); 

;+1t t«
 

Until  maximum iteration number is reached 

Output: Final restored image ĔĔ G GDx . 

 

Figure 4: All experimental test images.  



 

V. EXPERIMENTAL RESULTS 

In this section, extensive experimental results are conducted to verify the performance of the proposed GSR for image restoration 

applications, which include image inpainting, image deblurring and image compressive sensing recovery. The parameter setting of 

GSR is as follows: the size of a group is set to be 64×60, with sB  being 64 and cbeing 60. The width of overlapping between 

adjacent patches is 4 pixels, leading to the relationship 240K N= . The range of training window for constructing group, i.e., L×L is 

set to be 40×40. The parameters  and ɚ are set accordingly for different image restoration applications, which will be given 

below. All t he experiments are performed in Matlab 7.12.0 on a Dell OPTIPLEX computer with Intel(R) Core(TM) 2 Duo CPU 

E8400 processor (3.00GHz), 3.25G memory, and Windows XP operating system. 

To evaluate the quality of the reconstructed image, in addition to PSNR (Peak Signal to Noise Ratio, unit: dB), which is used to 

evaluate the objective image quality, a recently proposed powerful perceptual quality metric FSIM [45] is calculated to evaluate the 

visual quality. The higher FSIM value means the better visual quality. For color images, image restoration operations are only 

applied to the luminance component. All the experimental test images are given in Fig. 4. Due to the limit of space, only parts of 

the experimental results are shown in this paper. Please enlarge and view the figures on the screen for better comparison. 

Our Matlab code and all the experimental results can be downloaded at the website: http://idm.pku.edu.cn/staff/zhangjian/GSR/. 

A. Image Inpainting 

In this subsection, two interesting cases of image inpainting with different masks are considered, i.e., image restoration from partial 

random samples and text removal. For image inpainting application, 0.0025 and 0.082ɚ= . 

The proposed GSR is compared with five recent representative methods for image inpainting: SKR (steering kernel regression) 

[6], NLTV [35], BPFA [48], HSR [10] and SAIST [5]. SKR [6] is a classic method that utilizes a steering kernel regression 

framework to characterize local structures for image restoration. NLTV [35] is an extension of traditional total variation (TV) with 

a nonlocal weight function. BPFA [48] employs a truncated beta-Bernoulli process to infer an appropriate dictionary for image 

recovery and exploits the spatial inter-relationships within imagery through the use of the Dirichlet and probit stick-breaking 

processes. HSR [10] combines the strength of local and nonlocal sparse representations under a systematic framework called 

Bayesian model averaging, characterizing local smoothness and nonlocal self-similarity simultaneously.  

 

 

 

 

 

 



 

 

 

    

    

Figure 5: Visual quality comparison of image restoration from partial random samples for color image Barbara. From left to right and top to bottom: the degraded 

image with only 20% random samples available, original image, the recovered images by SKR [6] (PSNR=21.92dB; FSIM=0.8607), NLTV [35] (PSNR= 23.46dB; 

FSIM=0.8372), BPFA [48] (PSNR=25.70dB; FSIM=0.8926), HSR [10] (PSNR=28.83dB; FSIM=0.9273), SAIST [5] (PSNR=29.68dB; FSIM =0.9485) and the 

proposed GSR (PSNR=31.32dB; FSIM=0.9598). 

 

 

    

    

Figure 6: Visual quality comparison of image restoration from partial random samples for color image House. From left to right and top to bottom: the degraded 

image with only 20% random samples available, original image, the recovered images by SKR [6] (PSNR=30.40dB; FSIM=0.9198), NLTV [35] (PSNR=31.19dB; 

FSIM=0.9093), BPFA [48] (PSNR=30.89dB; FSIM=0.9111), HSR [10] (PSNR=32.35dB; FSIM=0.9255), SAIST [5] (PSNR=35.73dB; FSIM=0.9615) and the 

proposed GSR (PSNR=35.61dB; FSIM=0.9594). 

 

 



 

 

 

    

    

Figure 7: Visual quality comparison in the case of text removal for color image Barbara. From left to right and top to bottom: the masked image, original image, the 

recovered images by SKR [6] (PSNR=30.81dB; FSIM=0.9747), NLTV [35] (PSNR=32.60dB; FSIM=0.9749), BPFA [48] (PSNR=34.28dB; FSIM=0.9790), HSR 

[10] (PSNR=38.86dB; FSIM=0.9901), SAIST [5] (PSNR=39.00dB; FSIM=0.9915) and the proposed GSR (PSNR=40.86dB; FSIM=0.9936). 

 

    

    

Figure 8: Visual quality comparison in the case of text removal for color image House. From left to right and top to bottom: the masked image, original image, the 

recovered images by SKR [6] (PSNR=38.65dB; FSIM=0.9850), NLTV [35] (PSNR=38.44dB; FSIM=0.9820), BPFA [48] (PSNR=39.01dB; FSIM=0.9818), HSR 

[10] (PSNR=42.06dB; FSIM=0.9913), SAIST [5] (PSNR=41.20dB; FSIM=0.9893) and the proposed GSR (PSNR=42.51dB; FSIM=0.9916).  

 


