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Optimization-Inspired Compact Deep
Compressive Sensing

Jian Zhang

Abstract—In order to improve CS performance of natural im-
ages, in this paper, we propose a novel framework to design an
OPtimization-INspired Explicable deep Network, dubbed OPINE-
Net, for adaptive sampling and recovery. Both orthogonal and
binary constraints of sampling matrix are incorporated into
OPINE-Net simultaneously. In particular, OPINE-Net is composed
of three subnets: sampling subnet, initialization subnet and recov-
ery subnet, and all the parameters in OPINE-Net (e.g. sampling
matrix, nonlinear transforms, shrinkage threshold) are learned
end-to-end, rather than hand-crafted. Moreover, considering the
relationship among neighboring blocks, an enhanced version
OPINE-Net™ is developed, which allows image blocks to be sam-
pled independently but reconstructed jointly to further enhance the
performance. In addition, some interesting findings of learned sam-
pling matrix are presented. Compared with existing state-of-the-
art network-based CS methods, the proposed hardware-friendly
OPINE-Nets not only achieve better performance but also require
much fewer parameters and much less storage space, while main-
taining a real-time running speed.

Index Terms—Image reconstruction, neural networks,
optimization, compressive sensing, interpretable networks.

1. INTRODUCTION

OMPRESSIVE Sensing (CS) theory demonstrates that a
C signal can be reconstructed with high probability from
much fewer acquired measurements than determined by Nyquist
sampling theory, when it exhibits sparsity in some transform
domain [1], [2]. This novel acquisition strategy is much more
hardware-friendly and it enables image or video capturing with
a sub-Nyquist sampling rate [3], [4]. In addition, by exploiting
the redundancy existing in a signal, CS conducts sampling
and compression at the same time, which greatly alleviates the
need for high transmission bandwidth and large storage space,
enabling low-cost on-sensor data compression. CS has been
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applied in many practical applications, including but not limited
to single-pixel imaging [2], [5], accelerating magnetic resonance
imaging (MRI) [6], wireless tele-monitoring [7] and cognitive
radio communication [8].

Mathematically, for the original signal x € RY, in the
sampling process, its CS measurements are obtained by
y = ®&x € RM Here, ® € RM*Y is alinear random projection
(matrix). Then, in the recovery process, the purpose is to infer
x from y. Because M <N, this inverse problem is typically
ill-posed, whereby the CS ratio is defined as % In this paper,
we mainly focus on CS sampling and recovery of natural images.

In the past decade, sparse representation model [9], which
assumes that natural images can be sparsely represented by a
dictionary, has achieved great success in image processing and
compressive sensing [10]-[12]. Recently, researchers realize
simultaneously optimizing the sampling matrix and the dictio-
nary for the CS system yields a better signal recovery perfor-
mance [13]-[15]. Concretely, traditional methods usually con-
sider the problem of simultaneously learning sampling matrix
and sparsifying dictionary by exploiting some structured sparsity
as an image prior and then solve a sparsity-regularized optimiza-
tion [13], [16]. Although these methods enjoy the advantage of
interpretability, they inevitably suffer from high computational
complexity, and they are also faced with the challenges of tuning
parameters in their solvers. Fueled by the powerful learning
ability of deep networks, several deep network-based image CS
algorithms have been recently proposed to jointly optimizing
the sampling matrix and the non-linear reconstruction oper-
ator [17]-[20]. Compared to optimization-based algorithms,
these non-iterative algorithms dramatically reduce time com-
plexity, while achieving impressive reconstruction performance.
However, existing network-based CS algorithms for adaptive
sampling and recovery are all trained as a black box, which
limits the insights from the CS domain.

To address the above drawbacks, we combine the merits
of both optimization-based and network-based methods and
propose a novel optimization-inspired explicable deep network,
dubbed OPINE-Net, for adaptive sampling and recovery of
image CS. All the parameters involved in OPINE-Net (e.g. non-
linear transforms, shrinkage threshold, step size, etc.) are learned
end-to-end using back-propagation. As such, OPINE-Nets enjoy
the advantages of fast and accurate reconstruction with well-
defined interpretability. As far as we know, OPINE-Net is the
first work that maps an optimization problem into deep net-
work for joint adaptive binary sampling and recovery of image
CS.
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In summary, our main contributions are four-fold:

® We present a constrained optimization framework for adap-
tive sampling and recovery of image CS, and we further
propose to solve it with a two-step scheme, based on
which we are able to efficiently design our deep network
OPINE-Net.

® We propose to incorporate the binary and orthogonal
constraints for sampling matrix and the weight-sharing
strategy into OPINE-Net simultaneously, which makes
the whole network much more hardware-friendly and
memory-saving.

® We propose an enhanced multi-block version of OPINE-
Net, dubbed OPINE-Net™, by exploiting the inter-block
relationship to improve image quality. Compared with
other network-based image CS methods, the proposed
OPINE-Nets not only achieve the best performance but also
have much fewer network parameters and much smaller
model size.

® Three interesting findings of learned sampling matrix are
presented, which fully verify the feasibility of data-driven
joint learning of sampling and recovery for CS.

II. RELATED WORK

According to the way of generating the sampling matrix, we
generally group existing CS methods of natural images into
two categories: fixed random Gaussian matrix and data-driven
adaptively learned matrix. In what follows, we give a brief
review.

Fixed Random Gaussian Matrix: In this case, the sampling
matrix ® € RM*N js constructed by generating a random
Gaussian matrix and then orthogonalizing its rows, i.e. ®® "
=1, where I is the identity matrix. Applying y = ®x yields the
CS measurements of the original image x. Then, given ® and y,
traditional image CS methods usually reconstruct x by solving
the following optimization problem:

o1
m91n§||‘I>D9 —yliz + 2], 1

where D € RV* denotes a sparsifying dictionary, 8 € R*!
denotes the representation coefficients of x over D and the
sparsity of the vector 8 is encouraged by the /1 norm with A being
the regularization parameter. After solving Eq. (1) to obtain 0,
the CS recovered image is X = D6.

Many classic domains (e.g. DCT, wavelet [21], and gradient
domain [22]) and prior knowledge about transform coefficients
(e.g. statistical dependencies [23], structure [24], etc.) have been
applied in modeling Eq. (1) [25]-[27]. These traditional image
CS reconstruction methods usually require hundreds of itera-
tions to solve Eq. (1) by means of various iterative solvers (e.g.
ISTA [28], ADMM [22], or AMP [29]). Quite recently some fast
and effective convolutional neural network (CNN) denoisers are
trained and integrated into Half Quadratic Splitting (HQA) [30]
and alternating direction method of multipliers (ADMM) [31],
[32] to solve image inverse problems.

Recently, several deep network-based image CS reconstruc-
tion algorithms have been proposed to learn the representation

from training data and to reconstruct test data from their CS
measurements [33]-[36]. Furthermore, the tremendous success
of deep learning for many image processing applications has
also led researchers to consider relating iterative optimization
methods to neural net-works [37]-[41]. In particular, some
optimization-inspired deep unrolling networks are proposed to
achieve state-of-the-art performance for CS recovery in the case
of fixed random Gaussian matrix [42]-[44].

Data-Driven Adaptively Learned Matrix: In this case, the
sampling matrix ® € RM* is adaptively learned by the train-
ing dataset X = {x1,x2,...,Xx, }. To optimize the sampling
matrix and the dictionary simultaneously, traditional methods
usually formulate it by minimizing the following problem:

Ny
min

1
ity 3 { 19D, @3+ 5106, -3 + 20111 |

)
where 0; denotes the representation coefficients of each x; over
D [13], [16]. The above problem can be solved by utilizing
the alternating-minimization based methods. The main idea is
to alternatively update one variable while fixing the others.
After obtaining the learned D and ®, CS recovery problem will
become Eq. (1). Based on some well-studied image formation
models, these methods enjoy the advantage of well-defined inter-
pretability. However, they usually require hundreds of iterations
to solve Eq. (1) for CS recovery, which inevitably gives rise to
high computational cost. In addition, Eq. (2) only works well
for small image patches (such as 8 x 8), since solving Eq. (2)
will become inefficient and even impractical if the dimension
of the dictionary is high or the size of training dataset is very
large [13], [16].

Lately, some deep networks are developed to jointly opti-
mizing the sampling matrix and the non-linear recovery oper-
ator [17]-[20], [45], [46]. In particular, Adler ef al. propose to
utilize a fully-connected network to perform both the block-
based linear sensing and non-linear reconstruction stages. Lohit
et al. propose to add one fully-connected layer as the sampling
matrix in front of ReconNet [35] for simultaneous sampling and
recovery. Shi et al. [19] and Du et al. [18] separately propose
to adopt a convolution layer to mimic the sampling matrix and
utilize all-convolutional networks for CS recovery. Obviously,
the network-based CS methods not only jointly train the sam-
pling and recovery stages, but also are non-iterative, which
dramatically reduces time complexity as compared with their
optimization-based counterparts. However, existing networks
for joint learning of sampling matrix and recovery operator
are either fully-connected or repetitive convolutional layers. We
believe that their lack of structural diversity is the bottleneck for
further performance improvement.

In order to address the drawbacks of existing networks-based
CS methods in the case of data-driven adaptively learned matrix
and inspired by the success of optimization-inspired network
in the case of fixed random Gaussian matrix, we propose to
a novel optimization-inspired deep structured network, dubbed
OPINE-Net, for adaptive sampling and recovery of image CS.
We will detail our OPINE-Net in next section.
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III. PROPOSED OPINE-NET FRAMEWORK

In this section, we first present a constrained optimization
framework for adaptive sampling and recovery of image CS.
Then, we propose to solve it with a two-step scheme, based
on which we are able to efficiently design our deep network
OPINE-NET. Finally, in order to address the issue of blocking
artifacts introduced by block-based sampling and recovery, we
extend the intra-block training of OPINE-NET to inter-block
training to enhance the CS recovery quality. Compared with
other network-based image CS methods, the proposed OPINE-
Net not only achieves the best performance but also has fewer
network parameters. More details are provided below.

A. Problem Formulation

Assume we have a training dataset X = {x1,X2,...,Xn, }
where N, is the number of image blocks. Instead of using the
synthesis sparse model as in Eq. (2), we adopt a constrained
analysis sparse model and introduce a nonlinear sparsifying
transform F for modelling the image CS problem. Without
losing generality, we consider two typical types of constraints
associated with ®. One is ®® ' = I, where I is the identity
matrix. To facilitate practical hardware implementation, we
further introduce a second constraint — & is binary, i.e. each
element of ® is either 1 or —1. Both constraints are represented
as the set (), and thus the proposed optimization framework
is formulated as

Ny
. 1, .
anin, S { S 185~ @xE IR | se (@),

Xi»

3)
where X; denotes the recovered image block.

Next, to map the optimization in Eq. (3) in an efficient way,
we propose to implement it in a two-step scheme. Concretely,
the first step is to design the network architecture based on the
unconstrained version of Eq. (3), i.e. Eq. (3) without the con-
straints 2(®). Then, the second step is to enforce the constraints
Q(®) back by incorporating them into the network to form a
complete OPINE-Net.

B. Architecture Design of OPINE-Net

In this subsection, we will elaborate on the architecture de-
sign of the proposed OPINE-Net according to Eq. (3) without
Q(®). Fig. 1 illustrates the overall architecture of OPINE-Net,
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Tlustrations of our proposed OPINE-net framework. Specifically, OPINE-Net is composed of three subnets: Sampling Subnet (SS), Initialization Subnet
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Fig.2. Illustration of the equivalent transformation from matrix multiplication

to matrix convolution.

which is composed of three sub-networks: sampling subnet,
initialization subnet, and recovery subnet. We will describe the
design of these three sub-networks in detail in the following
subsections.

1) Sampling Subnet (SS): In this paper, we denote a block of
size VN x VN by its vector representation x € RY, and the
linear measurements of a block by y € R, which is obtained
viay = ®x, where ® is a measurement matrix.

Viewing the measurement matrix ® € R**¥ as a learnable
network parameter, we reshape it into M filters in the same way,
i.e. each of which is of size VN x /N, as shown in Fig. 2.
By this means, we can equivalently mimic the CS sampling
process y = ®x € RM using a convolutional layer without
bias, which we call sampling subnet (SS). Fig. 1 illustrates a
concrete example of sampling an image block x of size 33 x
33 with CS sampling rate 25%. The sampling subnet exploits a
convolution layer using 272 filters of size 33 x 33 to obtain the
CS measurements y, which is represented by a tensor of size 1 x
1 x 272. Note that the advantage of using a convolutional layer
in SS is that it can be easily extended to multi-block training,
which will be shown in the following.

2) Initialization Subnet (IS): Inspired by traditional opti-
mization, given y = ®x as the output of the SS, the proposed
initialization subnet (IS) utilizes ® 'y as the OPINE-net ini-
tialization, denoted by %) To be concrete, IS is composed of
two consecutive operations: a 1 x 1 convolution layer and a
pixelshuffle layer. We first reshape @ ' € RY*M into N filters,
each of which is of kernel size 1 x 1 x M. With these filters, a 1
x 1 convolution layer is utilized to obtain ® "y, which is actually
atensor of size 1 x 1 x IN. Then, we adopt the pixelshuffie layer
to reshape a tensor 1 x 1 x N into a tensor VN x v/ Nx 1.
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Fig. 3. Illustration of the pixelshuffle operation in the proposed initialization
subnet (IS).

The pixelshuffle layer is clearly depicted in Fig. 3, which
was first introduced for sub-pixel convolution for image super-
resolution [47]. As shown in Fig. 1, a tensor of size 1 x 1 X
272 is transformed into a tensor of size 33 x 33 x 1 through IS.
In fact, IS is an efficient convolutional implementation of ®7,
which can be easily extended to multi-block training and will
also be used in the following recovery subnet.

Compared with existing deep network based CS methods that
introduce extra M x N parameters for initialization [17]-[20],
our proposed IS only utilizes ® and requires no extra parameters.
Because the amount M x N is usually quite large, our proposed
OPINE-Net clearly reduces the number of network parameters.

3) Recovery Subnet (RS): Regarding ® and F as learnable
network parameters and given the measurements ®x, Eq. (3)
without the constraints €2(®) is reduced to the following ex-
pression (subscript 7 is omitted without confusion):

1
min | ®% — x5 + A7 ()| &

Obviously, Eq. (4) becomes the CS recovery with fixed ®. As
discussed before, several recent optimization inspired networks
are developed for CS recovery, such as ISTA-Net™ and ADMM-
Net [42], [44]. Considering the simplicity and interpretability, in
this paper, we adopt the framework of ISTA-Net™ to efficiently
solve Eq. (4). However, it is worth noting that the proposed
OPINE-Net can also be trivially extended to other deep unrolling
networks to solve Eq. (4).

To be specific, Eq. (4) can be efficiently solved with itera-
tive shrinkage-thresholding algorithm (ISTA) by iterating the
following two update steps:

r® =D e (@D — @x), ®)
~ 4 1 < X
%) = arg min §||X — 3+ 2| F (&)1 (6)

ISTA-Net™ consists of a fixed number of phases, and each
phase corresponds to one iteration in traditional ISTA, as il-
lustrated in Fig. 4. In particular, each phase of ISTA-Net™ is
composed of r(¥) and %(*) modules, which are corresponding
to the above two update steps Eq. (5) and Eq. (6).

Here, to preserve the ISTA structure, r*) module is directly
defined according to Eq. (5), in which the step size p becomes a
learnable parameter.

To map Eq. (6) into deep network, first define a linear operator
R(-) as R = G oD, where D corresponds to N filters (each
of size 3 x 3 in the experiments). Then define F = H oD,

where H consists of two linear convolutional operators and
one rectiﬁed linear unit (ReLU). Next, define the Left inverse
of H as H, i.e., satisfying the symmetry constraint H o H = 7.
Therefore, with the learnable parameters {H, H,D,G, 0}, the
%(*) module to solve Eq. (6) is expressed as:

£ =™ L G(H(soft(H(D(E™)), ). (D

Different from ISTA-Net™, in this paper, we generalize G,
and set it as a composition of several convolutional operators
and ReLUs. Furthermore, our recovery subnet (RS) includes
N, phases. From experiments, we found sharing weights across
all the phases does not affect the final performance in adaptive
sampling and recovery. Therefore, we restrict that each phase
in our RS shares the same weights, which greatly reduces the
number of parameters in RS.

C. Constraint Incorporation

In this subsection, we will show how to incorporate the two
constraints in (®) into OPINE-Net simultaneously.

For the orthogonal constraint ®® ' = I, we design an or-
thogonal loss term, denoted by L1, = ﬁH‘INI)T — 1%, and
propose to directly enforce this constraint into the loss function
of OPINE-Net.

For the binary constraint, considering that ® should also
satisfy the above orthogonal constraint, we introduce an aux-
iliary variable denoted by ® € RM*N and define & =
o BinaryS ign(‘il'), where « is actually a learnable scale factor
parameter and BinarySign(-) is an element-wise operation
defined below

BinarySign(z) =1 ifz>=0 or —1ifz<0. (8

Furthermore, in order to use back-propagation, we define
the derivative of BinarySign(-) as a constant function, i.e.
BinarySign'(z) = 1. Therefore, in practical implementation,
the real learnable parameter is ‘i>, and we use « Binary
Sign(®) to replace ® in OPINE-Net.

Experiments demonstrate that the above schemes for con-
straint incorporation are very effective and efficient.

D. Network Parameters and Loss Function

In light of previous descriptions, Eq. (3) has been suc-
cessfully mapped into our proposed OPINE-Net. Concretely,
the learnable parameter set in OPINE-Net, denoted by O,
includes the scale factor o and the auxiliary variable o
in the sampling subnet, the step size p, the parameters
of the transforms D(-),H(:),H(:),G(-), and the shrink-
age threshold 0 in the recovery subnet. As such, © =
{o, ®,p,0,D(-), H(-),H(-),G(-)}. Note that all these parame-
ters will be learned as neural network parameters and all phases
in recovery subnet share the same parameters.

Given the training dataset {(x;)}~*,, OPINE-Net first takes
X; as input and generates the reconstructed result, denoted by

&EN") as output. Note that, the purpose is to reduce the dis-

crepancy between x; and )‘(EN”) (N, denotes the total number
of phases in recovery subnet) while satisfying the symmetry
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Fig. 5.
blocking artifacts.

constraint H oM =7 and the orthogonal constraint and the
binary constraint. Therefore, we design the end-to-end loss
function for OPINE-Net as follows:

Etotal(e) = Ldiscrepancy + ’Y['symmetry + ,U‘CO'I"thv

N,
»Cdiscrepancy = ﬁzﬁ\/:bl ||X£ ») - XiH%‘v

. N No 17 k k
With: 4 Loymmetry = 1 S n Sty [HH(EM)) — 2073,
Lorth = #”(}@T - IH%‘

€))

where zz(-k) = D(rgk) ) and NV, denotes the number of elements in
zz(»k). || - ||% stands for the Frobenius norm of a matrix or a tensor,
Ny, denotes the total number of training blocks of size \/N X
V/N, , i are the regularization parameters. In our experiments,
~ and p are set to 0.01.

E. Enhanced Multi-Block Version: OPINE-Net

From Fig. 1, one can clearly see that each image block is
sampled and reconstructed independently, which will inevitably
result in blocking artifacts and decrease image quality. In order
to exploit the inter-block relationship and improve image qual-
ity, we furthermore design an enhanced multi-block version of
OPINE-Net, dubbed OPINE-Nett. As illustrated in Fig. 5, in-
stead of one block of size 33 x 33, we adopt a larger image block
of size 99 x 99 as input for training, denoted by X. Obviously,
X can be divided into nine blocks, i.e. X = {x1,...,X9}. Due

Ilustrations of our proposed OPINE-Net™ framework, which allows image blocks to be sampled independently but recovered jointly, greatly suppressing

to stride=33 in the convolution layer in the sampling subnet and
the efficient convolutional design of ® and &' in OPINE-Net,
the proposed OPINE-Net™ allows image blocks of size 33 x 33
to be sampled independently but reconstructed jointly.

IV. EXPERIMENTAL RESULTS

For fair comparison, we use the same set of 91 images as
in [35] for training. The training data {x;} ", is first generated
by randomly extracting the luminance component of 88,912
image blocks (each of size 33 x 33),i.e. N, = 88912 and N =
1089 for OPINE-Net and 43,340 image blocks (each of size 99
% 99) for OPINE-Net™, respectively. Then, for a given range of
CSratios {1%, 4%, 10%, 25%, 50%}, we train the OPINE-Nets
separately for adaptive sampling and recovery of image CS,
obtaining the corresponding learned sampling matrices ® €
RM>*N 1In practice, the training of OPINE-Net* is accelerated
by fine-tuning OPINE-Net for one epoch. All the experiments
are performed on a workstation with Intel Core 17-6820 CPU
and GTX1080Ti GPU by PyTorch. Adam optimization [48] is
used with a batch size of 64. ! Training OPINE-Nets with phase
number N, = 9 in recovery subnet roughly takes 10 hours.
For testing, we utilize three widely used benchmark datasets:
Setl1 [35], BSD68 [49] and Urban100 [50]. Note that we deal
with color images in the transformed YCbCr space and conduct
an independent operation for each channel. The CS recovered

!"The sources codes and training models of OPINE-Net and OPINE-Nett will
be made [Online]. Available: https://jianzhang.tech/projects/OPINENet
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(a) Average PSNR curves for Set11 by OPINE-Net with various phase numbers in the cases of CS ratio = 25%j (b) The progression curves of L; screpancy>

Lsymmetry> Lorth achieved by OPINE-Net in training with various epoch numbers in the case of CS ratio = 25%.

results are evaluated with PSNR and SSIM [51] on Y channel
(i.e., luminance).

A. Study of Phase Number and Convergence

To determine a proper phase number V,,, we plot the average
PSNR curves by OPINE-Net for Setl1 with respect to different
phase numbers in the cases of CS ratio = 25%, as shown in
Fig. 6(a). One can observe that the PSNR curves increase as
phase number NV, increases; however, the curves are almost
flat when N, > 9. Thus, considering the trade-off between
computational complexity and recover performance, we set IV,,
to be 9 for our OPINE-Nets by default.

Fig. 6(b) further illustrates the progression of three types
of losses, i.e. Laiscrepancys Lsymmetry and Lopen in Eq. (9)
achieved by OPINE-Net with respect to epoch number in train-
ing in the case of CS = 25% and NNV,, = 9. Clearly, OPINE-Net
converges very fast and all three losses decrease consistently.
In particular, the losses Loymmetry and Lopen are eventually
close to zero, indicating that the learned OPINE-Net satisfies
the corresponding two constraints.

B. Ablation Studies and Discussions

By default, our propose OPINE-Net has three constraints, i.e.
binary constraint (BC) of ®, orthogonal constraint (OC) of ®,
and shared weights (SW) across phases in recovery subnet. In
this subsection, we will investigate the performance effect of
these three ®. constraints and give some interesting findings
about the learned Table I shows the ablation investigation on
the effects of BC, OC, and SW. From Table I, we can observe
that these three constraints do not impair the final performance of
OPINE-Net. In fact, BC and OC play as the role of network regu-
larization and always improve the performance a little. Note that
BC makes the proposed OPINE-Net more hardware-friendly and
greatly reduces the storage of ®. SW also reduces the storage of
the parameters in recovery subnet from [V, phases to one phase.
We further visualize the convergence process of four typical
combinations in Fig. 7. We use the performance of ISTA-Net™

TABLE I
ABLATION INVESTIGATION OF NETWORK CONSTRAINTS: BINARY CONSTRAINT
(BC) OF @, ORTHOGONAL CONSTRAINT (OC) OF @, AND SHARED WEIGHTS
(SW) IN RECOVERY SUBNET. WE OBSERVE THE BEST PERFORMANCE (PSNR)
ON SET11 IN THE CASE OF CS RATIO = 25%

Different combinations of constraints in OPINE-Net ]

BCc | X v X X v v v

oc | X X v X v X v

sw | X X X v X v v
[PSNR | 3431 | 3439 | 3443 | 3441 | 3447 | 3443 | 34.44 |

Average PSNR

—\one

m====0Only OC
m—BC+0OC

26 m— RC+0C+SW -
ISTA-Net

I T T T
0 50 100 150
Epoch

Fig.7. Convergence analysis on four combinations of constraints. The curves
for each combination are based on the PSNR on Setl11 in the case of CS ratio =
25%.

with fixed random Gaussian matrix as a reference. ‘None’ means
the case without using the above three constraint. Clearly, all
curves converge stably to the same result. The curves with fewer
constraints usually have faster speed and OC does not affect the
convergence speed.

Next, we give three interesting findings about the learned ®
obtained by OPINE-Net with different constraint combinations.
1) Define the sampling matrix learned in the case of ‘None’ as
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TABLE II
AVERAGE PSNR/SSIM PERFORMANCE COMPARISONS WITH DIFFERENT CS RATIOS. THE PROPOSED OPINE-NETT ACHIEVES THE BEST PERFORMANCE,
WHICH IS LABELED IN BOLD

[ Dataset [ CSratio | ISTA-Net™ [44] | BCS [17] [ CSNet [19] [ AdapReconNet [20] [ OPINE-Net [ OPINE-Net™ |
1% 17.42/0.4029 | 19.15/0.4410 | 19.87/0.4977 19.63/0.4348 19.87/0.5070 | 20.15/0.5340
4% 21.32/0.6037 | 23.19/0.6633 | 23.93/0.7338 23.87/0.7279 25.04/0.7730 | 25.69/0.7920
Setl1 10% 26.64/0.8087 | 26.04/0.7971 | 27.59/0.8575 27.39/0.8521 29.33/0.8825 | 29.81/0.8884
25% 32.59/0.9254 | 29.98/0.8932 | 31.70/0.9274 31.75/0.9257 34.44/0.9491 | 34.86/0.9509
50% 38.11/0.9707 | 34.61/0.9435 | 37.19/0.9700 35.87/0.9625 39.88/0.9790 | 40.17/0.9797
1% 19.14/0.4158 | 21.24/0.4624 | 21.91/0.4958 21.50/0.4825 21.80/0.4972 | 22.11/0.5140
4% 22.17/0.5486 | 23.94/0.6193 | 24.63/0.6564 24.30/0.6491 24.87/0.6709 | 25.20/0.6825
Set68 10% 25.32/0.7022 | 26.07/0.7537 | 27.02/0.7864 26.72/0.7821 27.54/0.7966 | 27.82/0.8045
25% 29.36/0.8525 | 29.18/0.8729 | 30.22/0.8918 30.10/0.8901 31.28/0.9034 | 31.51/0.9061
50% 34.04/0.9424 | 33.18/0.9400 | 34.82/0.9590 33.60/0.9479 36.12/0.9646 | 36.35/0.9660
1% 16.90/0.3846 [ 18.97/0.4363 [ 19.26/0.4632 19.14/0.4510 19.45/0.4308 | 19.82/0.5006
4% 19.83/0.5377 | 21.55/0.5986 | 21.96/0.6430 21.92/0.6390 22.91/0.6930 | 23.36/0.7114
Urban100 |  10% 24.04/0.7378 | 23.58/0.7230 | 24.76/0.7899 24.55/0.7801 26.44/0.8298 | 26.93/0.8397
25% 29.78/0.8954 | 26.75/0.8410 | 28.13/0.8827 28.21/0.8841 31.40/0.9270 | 31.86/0.9308
50% 35.24/0.9614 | 30.65/0.9129 | 32.97/0.9503 31.88/0.9434 36.88/0.9729 | 37.23/0.9741

(a) Fixed Gaussian

(b) Only OC (c) BC+OC+SW

Fig. 8. Visualization of one row in the traditional fixed random Gaussian
matrix (left), the learned matrix with ‘OC’ (middle) and the learned matrix with
‘BC+OC+SW” (right).

® .. We observe that, although there is no constraints, ® y,
still satisfies the orthogonal constraint in the following form:
® Py, = 11, where 7 usually varies at each training. This
verifies the necessity of OC again. 2) Define the sampling matrix
learned in the cases of ‘OC’ and ‘BC+OC+SW’ as @, and
® 4, respectively. Denote the fixed random Gaussian matrix,
as ® p. In the cases with same CS ratios, We reshape one row
in ®pg, Poc and P4y into [33 33] and visualize them in
Fig. 8, along with their frequency. Obviously, the rows repre-
senting a filter in oo and P 4;; are more structured and are
more like a low-pass filter, instead of being random as one in
® ;. 3) Define the normalized Py, as ‘i>1vo = 'I’NO/\/ﬁ. We
plot the histograms of ® No» Poc and P r in the cases of
CS ratio = 25% and ratio = 50%, respectively, as shown in
Fig. 9. Surprisingly, in each case, these three matrices have the
same distribution, which naturally leads to the following two
inferences. The first one is the learned sampling matrix retains
the same properties as the fixed random Gaussian matrix, such
as RIP [52]. The second one is the feasibility of data-driven CS
sampling matrix learning has been fully verified.

C. Comparison With State-of-the-Art Methods

We compare our proposed OPINE-Net with four recent repre-
sentative deep network-based CS methods, namely ISTA-Net™

[44], BCS [17], CSNet [19] and AdapReconNet [20]. ISTA-
Net™ does not involve sampling matrix learning, but generates
state-of-the-art CS recovery results using fixed random Gaussian
sampling matrix. The other four competing methods are able to
learn adaptive sampling and recovery for image CS.

Table II clearly shows that our proposed OPINE-Net and
OPINE-Net™ outperform all the other competing methods by
a large margin across all the CS ratios. Note that ISTA-Net™
can be regarded as a special case of our proposed OPINE-Net
when the sampling matrix is fixed. OPINE-Nets achieved more
than 2 dB PSNR gains on average than ISTA-Net™, which fully
illustrates the necessity of adaptive sampling. Compared with
the remaining four methods, the performance improvement of
OPINE-Net mainly comes from the network structure inspired
by optimization. Accordingly, the superior performance by
OPINE-Net verifies the effectiveness of designing optimization-
inspired deep network for joint learning of sampling and recov-
ery. Furthermore, the enhanced version OPINE-Net™ achieved
about 0.4 dB PSNR gain on average than OPINE-Net.

In Fig. 10, we show the reconstructions of all six methods
of two images when the CS ratio is 10% and 25% respectively.
The proposed OPINE-Net is able to recovery more details and
sharper edges than other competing methods, and OPINE-Net™
achieves better results than OPINE-Net by further reducing
blocking artifacts. More visual comparisons of OPINE-Net and
OPINE-Net™ in the cases of CS ratio = 4% and ratio = 10%
are shown in Fig. 11, which clearly verifies the superiority of
OPINE-Net™.

D. Study of Model Size and Computational Time

Table III provides a comparison of model size and compu-
tational time for various methods in the case of CS ratio =
50%. Since BCS exploits all fully-connected layers, it has the
most parameters and the largest model size. Compared with
the other three CNN-based methods, our OPINE-Net reduces
the parameters by half due to that no additional parameters
are introduced in the initialization subnet. Remember that the
learned ® by OPINE-Net is binary. If we use one bit instead
of 4 bytes to represent one element in the ®, then the model
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Fig. 9. Visualization of histograms of B o, P o and P ¢ in the cases of CS ratio = 25% and ratio = 50%. Clearly, these three matrices have the same
distribution.
Original ISTA-Net BCS AdapReconNet CSNet OPINE-Net OPINE-Net*
b el D - ' L
PSNR/SSIM 24.98/0.6961 25.34/0.7231 26.18/0.7598 26.38/0.7657 27.30/0.7850 27.60/0.7960
PSNR/SSIM 32.98/0.9525 28.72/0.9007 30.59/0.9367 30.79/0.9376 34.41/0.9691 35.05/0.9723
Fig. 10.  Visual comparison of all the competing CS methods. The proposed OPINE-Nets are able to recovery more details and sharper edges than other competing
methods.

Original OPINE-Net OPINE-Net*

TABLE III
COMPARISON OF COMPUTATIONAL TIME AND MODEL SIZE

35.39/0.9623

36.09/0.9649

\ | BCS | AdapReconNet | CSNet | OPINE-Net |
#Para 7.76M 1.15M 1.17M 0.62M
Size 31.05MB 4.62MB 4.67MB 2.48MB
Time 0.0018s 0.0027s 0.0007s 0.0101s

PSNR/SSIM

28.24/0.8532 28.69/0.8626

Fig. 11.  Visual comparison of OPINE-Net and OPINE-Net™. The proposed
OPINE-Net ™ achieves better results than OPINE-Net by further reducing block-
ing artifacts.

size of OPINE-Net can be further reduced to 0.31 MB from
2.48 MB. The last row records the average running time on a
512 x 512 image with GPU. Note that the computational time
of OPINE-Net is less than 15 millisecond (ms), which leads to
more than 60 frames-per-second (FPS).

V. CONCLUSION AND FUTURE WORK

Inspired by traditional optimization, we propose a novel
framework to design a structured deep network for adaptive
sampling and recovery of image compressive sensing (CS),
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which is dubbed OPINE-Net, as well as its enhanced version
OPINE-Net™. With the incorporated orthogonal and binary con-
straints of sampling matrix. the proposed OPINE-Nets possess
well-defined explicability, and make full use of the merits of
both optimization-based and network-based CS methods. All
the parameters in OPINE-Nets are discriminately learned end-
to-end. Some interesting findings of learned ® are presented.
Compared with existing network-based methods, the proposed
hardware-friendly OPINE-Nets reduce the number of learnable
parameters by half and achieves about 8 x model compression
rate improvement. What’s more, OPINE-Nets greatly improve
upon the results of state-of-the-art CS methods, while maintain-
ing a real-time speed. Since the developed framework is quite
general, one direction of interest is to extend OPINE-Net to
video application or to other scenarios with joint sampling and
recovery.
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