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Abstract—Traditional methods for image downsampling commit to
remove the aliasing artifacts. However, the influences on the quality of
the image interpolated from the downsampled one are usually neglected.
To tackle this problem, in this paper, we propose an interpolation-de-
pendent image downsampling (IDID), where interpolation is hinged to
downsampling. Given an interpolation method, the goal of IDID is to
obtain a downsampled image that minimizes the sum of square errors
between the input image and the one interpolated from the corresponding
downsampled image. Utilizing a least squares algorithm, the solution of
IDID is derived as the inverse operator of upsampling. We also devise
a content-dependent IDID for the interpolation methods with varying
interpolation coefficients. Numerous experimental results demonstrate the
viability and efficiency of the proposed IDID.

Index Terms—Downsampling, interpolation, least squares, upsampling.

I. INTRODUCTION

Accelerated development in electronic technology and computer
hardware brought about substantive increase in display devices of-
fering a wide range of image resolutions (e.g., computer monitors,
laptop computer screens, personal digital assistants, and cell phones).
To convert images with different resolutions between devices with
different display sizes, it is desirable to develop efficient image
downsampling and upsampling (interpolation) techniques. Image
downsampling is a process to make a digital image smaller by re-
moving pixels. By contrast, interpolation is a process to make a digital
image larger by interpolating pixels. Both image downsampling and
interpolation have wide applications in image/video processing. In
addition to the conversion between different image sizes, downsam-
pling and interpolation are alternative approaches to achieve better
performance for low-bit-rate image coding [1]–[3], where images are
downsampled prior to compression, and then, the missing portions are
interpolated after decompression. Image downsampling can be also
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utilized in SD/HD video coding, where an HD sequence is downsam-
pled to SD before encoding, and then, the decoded SD sequence can
be used for an SD-display device or converted to HD via interpolation
for an HD-display device. In addition, image downsampling and inter-
polation are important techniques for spatial scalable video coding [4].

Image downsampling is usually manipulated in spatial or frequency
domains. In the spatial domain, downsampling can be performed by
uniformly retaining the corresponding pixels within the input image. It
is also referred to as direct downsampling, which is the easiest down-
sampling algorithm. However, aliasing artifacts can be observed in the
direct downsampled image due to the overlapping of downsampled
spectra. To alleviate the aliasing artifacts, filtering is usually performed
prior to direct downsampling to limit the bandwidth of the input image.
In [1], an analytical model for JPEG encoders was derived to obtain
an optimality criterion on the downsampling factor for a given input
image. In [5], the downsampled image was obtained by directional pre-
filtering and uniform downsampling. In the frequency domain, wavelet
transforms [6], and discrete cosine transforms (DCTs) [7], [8] are usu-
ally employed for image downsampling, where the transformed coef-
ficients of low frequencies are maintained, whereas other coefficients
are discarded. Jung et al. in [9] introduced “subband DCT,” which was
later used for image resizing in the compressed domain [10].

Various interpolation techniques have been suggested for improving
the quality of a high-resolution image. Popular interpolation methods,
which are commonly used in image/video software and hardware
products, are bilinear interpolation, cubic convolution interpolation
[9], and cubic spline interpolation [10]. Such methods gain their
popularity mainly due to their relatively low complexity. However,
these interpolation methods fail to capture the fast-evolving statistics
around edges and consequently produce images with jaggies, blurring,
and ringing artifacts. Actually, it is a challenge to best preserve the
sharpness of edges in image interpolation. To address this problem,
several edge-guided methods [11]–[14] have been recently proposed.
Wang and Ward [11] proposed to derive the edge direction by making
use of gradients and get the best correlation pixels with the pixel to
be interpolated. In [12], two interpolation results were fused in two
mutually orthogonal directions using the statistics of a local window.
In [13], Li and Orchard proposed an edge-directed interpolation (EDI)
utilizing the covariance of a low-resolution image to estimate the
high-resolution-image covariance, which represents the edge direction
information to some extent. In our previous work [14], a nonlocal
EDI (NLEDI) was proposed by further taking the advantage of a
nonlocal-means filter [15].

Nowadays, there appear more and more interpolation methods with
superior performance. However, few joint downsampling and interpo-
lation algorithms are studied in the literature. In [2] and [16], the op-
timal interpolations were studied given the downsampling filter. Vari-
able projection was utilized in [2] to devise the optimal interpolation
coefficients given the downsampling filters, and they also explored the
use of optimal downsampling and interpolation filters for low bit-rate
image coding. In [16], a technique was proposed to identify patterns
associated with different downsampling methods so as to select the
appropriate interpolation mechanism. In [17] and [18], Goutsias and
Heijmans proposed a pyramid condition that the downsampling oper-
ator after upsampling should give the identity operator. However, as
stated in [17] and [18] the upsampling operator, after downsampling,
usually cannot result in the identity operator. Therefore, the difference
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Fig. 1. Image downsampling and interpolation.

between the input signal and the one generated by the upsampling op-
erator, which is termed as the detail signal in [17] and [18], is indis-
pensable for perfect reconstruction. It would be desirable to minimize
the energy of the detail signal. However, [17] and [18] did not give a
solution to tackle this problem.

In this paper, an interpolation-dependent image downsampling
(IDID) is proposed, where the difference between the input image and
the one generated by a specific interpolation method is minimized.
Part of our previous work has been published in [19]. Different from
traditional image downsamplings, which usually neglect the influence
on the quality of upsampled image interpolating from the downsam-
pled one, interpolation is hinged to downsampling in the proposed
IDID. In particular, for each pixel ���� �� to be downsampled, all
its neighboring pixels involving ���� �� during interpolation are
identified. The optimal downsampled value of ���� �� is the one that
minimizes the sum of square errors between the original and interpo-
lated intensity values within all the identified neighboring pixels. A
content-dependent IDID is also devised for the interpolation methods
with varying interpolation coefficients.

The remainder of this paper is organized as follows: Section II gives
a detailed description of the proposed IDID. Section III elaborates a
content-dependent IDID for those interpolations with varying coeffi-
cients. In Section IV, experimental results are provided. Finally, this
paper is summarized in Section V.

II. PROBLEM FORMULATION

Most existing interpolation methods attempt to exploit the informa-
tion of a low-resolution image to generate a high-resolution one with
much better visual quality. Aside from the performance of the interpo-
lation method, image downsampling also plays a critical role for the
quality of the interpolated image. This is because downsampling an
image may give rise to the loss of image information that cannot be
recovered by interpolation. For a given interpolation method, the more
information the low-resolution image contains, the better visual quality
the interpolated high-resolution image will exhibit. Consequently, in
order to obtain a higher quality interpolated image, it is desirable to
maintain more information during image downsampling.

Fig. 1 gives the sketch map of the image downsampling and interpo-
lation process, where the white circles indicate the original pixels lo-
cated within the input image, the black circles the downsampled pixels,
and the gray circles the interpolated pixels during the interpolation
process. Let� denote the input image of size��� ,� the image after
downsampling to size �������, and �� the upsampled image after
interpolation. The goal of the proposed IDID is to obtain an optimal
downsampled image that enables the upsampled image to have the
highest quality. Consequently, the optimal downsampled image should
satisfy
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Obviously, (1) indicates that the proposed downsampling method

depends on the interpolation process. For each downsampled pixel
���� ��, shown as the center of the nine black circles in Fig. 1, all
its neighboring pixels involving ���� �� during interpolation are
identified as the gray circles in Fig. 1. The optimization target of the
proposed IDID is to minimize the sum of square errors among all the
identified pixels and the corresponding original ones. It is noted that,
in Fig. 1, we assume that the value of each interpolated pixel only
depends on its four closest pixels, and it can be easily extended to an
arbitrary number of closest pixels.

Given the input image�, the interpolation process can be expressed
as

�� � �� (2)

where� represents the interpolation matrix. It is noted that�, which
is composed of coefficients of a specific interpolation method, can be
specified as

��
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(3)

where 	��� represents the interpolation coefficient contributed by the

th downsampled pixel during interpolation of the �th pixel. Here, both
the interpolated and downsampled pixels are represented in a concate-
nated and lexicographical order. Incorporating (3) and (2) into (1), the
objective function to derive the optimal downsampled image can be ex-
pressed as

� � 	
�
�

�������
 (4)

Setting the partial derivative of � to be zero, we derive

��

��
� ��� ������ � �
 (5)

The optimal downsampled image can be then expressed as

�
� � ���

������
�
 (6)

Obviously, the proposed downsampling operator is the left-inverse op-
erator for a full-rank interpolation operator. It should be noted that
the pyramid condition [17], [18] leads to the same downsampling op-
erator as the proposed IDID. However, [17] and [18] did not give a
closed-form solution of optimal downsampling operator for a given in-
terpolation operator.

III. CONTENT-DEPENDENT IDID

It is noted that, in (6), the interpolation matrix � must be avail-
able before downsampling. For those content-independent interpola-
tion methods, IDID can be directly performed utilizing the available
interpolation matrix. However, for the content-dependent interpolation
methods, interpolation matrix� is not available before downsampling.
Consequently, (6) cannot be directly utilized. To tackle such a problem,
we propose a content-dependent IDID, which is summarized in Table I.
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TABLE I
SUMMARY OF THE PROPOSED CONTENT-DEPENDENT IDID

Fig. 2. PSNR values of interpolated image by the content-dependent IDID
versus iteration number.

In the initialization stage, initial values �� and �� are first set. In
this paper, �� is comprised of bilinear interpolation coefficients, and
�

� is set to be the result generated by the direct downsampling. During
each iteration, we first update �� according to the previous value of
�

���, and then, we obtain �� based on the updated �� according to
(6). Subsequently, we compute the difference between �� and ����.
If the difference is below a given threshold � , it is considered that the
content-dependent IDID has converged, and the iteration can be ter-
minated. Otherwise, the algorithm moves to the next iteration. In this
paper, threshold � is set to be 0.5.

The peak signal-to-noise ratio (PSNR) values of interpolated images
versus the iteration number of the proposed content-dependent IDID
are illustrated in Fig. 2. Here, IDID_EDI� EDI represent that the input
image is first downsampled by IDID, where the interpolation matrix is
composed of EDI coefficients, and then, the downsampled image is in-
terpolated by EDI. Similarly, IDID_NLEDI � NLEDI represent that
the input image is first downsampled by IDID, where the interpola-
tion matrix is composed of NLEDI coefficients, and then, the down-
sampled image is interpolated by NLEDI. Different from EDI, NLEDI
assigns each pixel sample a unique weight value according to the struc-
ture similarity, compared with that of the center sample. Consequently,
it achieves better performance than EDI for the majority cases; see [14]
for more details.

It is shown that, compared with the direct downsampling method
(when iteration number is 0), IDID_EDI and IDID_NLEDI are able
to obtain downsampled images from which interpolated images with
much higher PSNR values can be generated. Another observation is

Fig. 3. Blockwise implementation of IDID.

that the PSNR values of the interpolated images tend to be converged
when the iteration number exceeds 2, e.g., there is very little fluctuation
among the interpolated images when the iteration number is larger than
2, which reflects the stability of IDID. Based on the observation in
Fig. 2, the iteration number is set to be 2 for content-dependent IDID
in this paper.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed IDID, extensive experiments were carried
out in this section. First a blockwise implementation of IDID is pro-
vided to reduce the storage and computational complexities. Then, the
downsampling and interpolation comparisons are presented. Finally,
an IDID-based low-bit-rate image compression scheme is given in the
third subsection.

A. Blockwise Implementation

It is noted that the dimension of matrix � in (6) is ���� �
������, which is too demanding in terms of storage and compu-
tational complexities. To tackle this problem, a blockwise IDID is
proposed and will be used in the following experiments. The down-
sampling and interpolation process of the blockwise implementation
is depicted in Fig. 3, where the white dots represent the downsampled
pixels, the black dots the interpolated pixels along the diagonal
direction, the square dots the interpolated pixels along the horizontal
direction, and the triangle dots the interpolated pixels along the ver-
tical direction. All the dots surrounded by the solid line belong to the
same block. It is noted that the interpolation of boundary pixels will
involve the downsampled pixels outside the current block, e.g., the
interpolations of the pixels indicated by the gray circles, gray squares,
and gray triangles in Fig. 3 involve the downsampled pixels outside
the current block.

To tackle such a problem, the interpolation of �� can be reformulated
as

�� � ������ (7)

where��� is a column vector representing the contribution of downsam-
pled pixels outside the current block. For the pixel, whose interpolation
does not involve those downsampled pixels outside the current block,
the corresponding element of ��� is set to be zero. In addition, for the
pixel, whose interpolation involves those downsampled pixels outside
the current block, the corresponding element of ��� is the summation
of multiplication between the interpolation coefficients and the corre-
sponding pixels outside the current block. In the experiment, the block
size of IDID is set to be 16.

B. Downsampling and Interpolation Comparisons

Seven sample images varying in size and content are selected in this
subsection to demonstrate the superior information preserving ability
of IDID. These test images include: Boat (512 � 512), Lena (512 �
512), Elaine (512 � 512), Couple (512 � 512), Cap (768 � 512),
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TABLE II
PSNR (IN DECIBELS) COMPARISON OF DIFFERENT COMBINATIONS OF

DOWNSAMPLING AND INTERPOLATION

Parrot (768� 512), and Motor (768� 512). Each image is downsam-
pled to one fourth of the original sizes (i.e., each dimension is divided in
half) and then interpolated to the original resolution. Bilinear, Bicubic,
EDI, and NLEDI are utilized for interpolation in the experiment.

The following six methods are used for downsampling.
1) Direct-subsampling: The downsampled value is the upper left one

of the four corresponding intensity values.
2) MPEG-B downsampling: Each image is first filtered to reduce

the bandwidth and then downsampled by the direct-subsampling
method. The filter coefficient is set to be [2, 0, �4, �3, 5, 19, 26,
19, 5, �3, �4, 0, 2]/64 [20].

3) IDID_Bilinear: Each image is downsampled by IDID, where the
interpolation matrix is composed of Bilinear interpolation coeffi-
cients.

4) IDID_Bicubic: Each image is downsampled by IDID, where the
interpolation matrix is composed of Bicubic interpolation coeffi-
cients.

5) IDID_EDI: Each image is downsampled by IDID, where the in-
terpolation matrix is composed of EDI coefficients.

6) IDID_NLEDI: Each image is downsampled by IDID, where the
interpolation matrix is composed of NLEDI coefficients.

Fig. 4. Different downsampled versions of Boat. (a) Direct subsam-
pling. (b) MPEG-B downsampling. (c) IDID_Bilinear. (d) IDID_Bicubic.
(e) IDID_EDI. (f) IDID_NLEDI.

The PSNR comparisons among different combinations of down-
sampling and interpolation methods are illustrated in Table II, where
the methods in the second column are downsampling methods and
the methods in the first row are interpolation methods. Three findings
have been observed from the experiments. First, the downsampling
methods have a significant quantitative effect on the interpolated
images. For the majority images, the differences between the best
and worst interpolation and downsampling combinations are more
than 1 dB. From the downsampled images generated by the direct
downsampling and MPEG-B downsampling, the interpolated images
with the lowest PSNR are obtained for almost all the interpolation
methods over each test image. This is due to the fact that these two
downsampling algorithms neglect the effect of interpolation. Second,
IDID is able to preserve more image information than the direct
and MPEG-B downsampling algorithms do. Almost for all the test
images, the interpolated images generated from the downsampled
ones by IDID are of higher PSNR, compared with those generated
from the downsampled ones by direct and MPEG-B downsampling
methods. This is because much more detailed information that is
necessary for interpolation is absorbed in IDID. Third, for each
interpolation method, IDID whose interpolation matrix is composed
of the coefficients of the corresponding interpolation method achieves
the highest PSNR. For example, Bilinear interpolation exhibits the
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TABLE III
PSNR COMPARISONS OF DIFFERENT COMPRESSION METHODS UNDER VARIOUS BITS PER PIXEL

Fig. 5. Upper-right-quarter comparisons among different interpolation ver-
sions of Boat. (a) Original image. (b) Interpolated image generated by the
combination of direct downsampling and Bicubic interpolation. (c) Interpo-
lated image generated by the combination of MPEG-B downsampling and
Bicubic interpolation. (d) Interpolated image generated by the combination of
IDID_Bicubic downsampling and Bicubic interpolation.

best performance when IDID_Bilinear is applied. Similarly, Bicubic,
EDI, and NLEDI have the best performance when the corresponding
IDID_Bicubic, IDID_EDI, and IDID_NLEDI are applied, shown as
the PSNR values represented in bold type in Table II. This further
verifies that IDID is an optimal downsampling operator for a specific
interpolation algorithm.

As an example, Fig. 4 depicts the different downsampled versions
of Boat generated by various methods. Obviously, the downsampled
images generated by IDID are able to not only improve the quality of
interpolated images but also exhibit quite good visual quality.

The upper-right-quarter comparisons among interpolated images
of Boat, generated by different combinations of downsampling and
Bicubic interpolation, are provided in Fig. 5. It is noted that all the
interpolated images are generated by Bicubic. Obviously, the interpo-
lated image generated from the direct downsampled version exhibits
serious sawtooth artifacts along mast regions. In addition, strong
blurring artifacts exhibit in the interpolated image generated from the
MPEG-B downsampled version. On the contrary, fewer sawtooth and
blurring artifacts can be observed in the interpolated image generated
from the IDID_Bicubic downsampled version.

Fig. 6. IDID-based low-bit-rate image compression.

Fig. 7. Visual comparisons among different compression methods at 0.20 bpp
for Elaine (512 � 512). (a) JPEG (0.21 bpp; 29.939 dB). (b) Direct � NLEDI
(0.21 bpp; 30.858 dB). (c) IDID_Bilinear� Bilinear (0.20 bpp; 31.174 dB). (d)
IDID_NLEDI � NLEDI (0.20 bpp; 31.262 dB).

C. Low-Bit-Rate Image Compression

Here, an IDID-based low-bit-rate image compression is presented.
As shown in Fig. 6, the presented low-bit-rate image compression is
composed of four components: 1) IDID; 2) JPEG encoder; 3) JPEG
decoder; and 4) interpolation.

Elaine (512� 512) and Boat (512� 512) are selected to test the ef-
ficiency of the proposed IDID-based low-bit-rate image compression.
The PSNR results of different methods are listed in Table III, where
the methods in the second row are downsampling methods and the
methods in the third row are interpolation methods. It is noted that
IDID_Bilinear represents that the interpolation matrix of IDID is com-
posed of coefficients of Bilinear. Similarly, IDID_Bicubic, IDID_EDI,
and IDID_NLEDI represent that the interpolation matrix of IDID is
composed of coefficients of Bicubic, EDI, and NLEDI, respectively.
The results are tabulated against the bit rates from 0.15 to 0.25 bpp.
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In most cases, the direct downsampling method outperforms JPEG,
without downsampling. This is because only a quarter of the original
data is needed to compress in the downsampling compression scenario.
The IDID-based image compression scheme significantly outperforms
the former two. This can be attributed to the property that IDID is able
to preserve more information in the downsampled images.

Fig. 7 gives the visual comparisons among different compression
methods at 0.20 bpp for Elaine (512 � 512). It is shown that JPEG re-
sults in the worst visual quality due to the existence of severe blocking
artifacts. In the reconstructed image by Direct� NLEDI (direct down-
sampling and NLEDI interpolation), blocking artifacts disappeared;
however, there is much more noise. This is because a lot of detail in-
formation is lost during direct downsampling, and it cannot be recov-
ered by NLEDI. On the contrary, the reconstructed images by IDID_Bi-
linear � Bilinear (IDID_Bilinear downsampling and Bilinear interpo-
lation) and IDID_NLEDI�NLEDI (IDID_NLEDI downsampling and
NLEDI interpolation) exhibit better visual quality and higher PSNR.

V. CONCLUSION

An IDID algorithm has been proposed in this paper. Different from
other downsampling algorithms, the proposed IDID hinges the inter-
polation to the downsampling process. For each input image, the IDID
is able to obtain an optimal downsampled image from which a high-vi-
sual-quality image with the same resolution as the input image is gen-
erated. We have also proposed a content-dependent IDID algorithm for
the interpolation methods with varying interpolation coefficients. Ex-
perimental results demonstrate the viability and efficiency of the pro-
posed IDID.
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Cellular Neural Networks, the Navier–Stokes Equation,
and Microarray Image Reconstruction

Bachar Zineddin, Zidong Wang, and Xiaohui Liu

Abstract—Although the last decade has witnessed a great deal of im-
provements achieved for the microarray technology, many major develop-
ments in all the main stages of this technology, including image processing,
are still needed. Some hardware implementations of microarray image pro-
cessing have been proposed in the literature and proved to be promising
alternatives to the currently available software systems. However, the main
drawback of those proposed approaches is the unsuitable addressing of the
quantification of the gene spot in a realistic way without any assumption
about the image surface. Our aim in this paper is to present a new image-re-
construction algorithm using the cellular neural network that solves the
Navier–Stokes equation. This algorithm offers a robust method for esti-
mating the background signal within the gene-spot region. The MATCNN
toolbox for Matlab is used to test the proposed method. Quantitative com-
parisons are carried out, i.e., in terms of objective criteria, between our
approach and some other available methods. It is shown that the proposed
algorithm gives highly accurate and realistic measurements in a fully auto-
mated manner within a remarkably efficient time.

Index Terms—cDNA microarray reconstruction, cellular neural net-
works (CNN), isotropic diffusion, Navier–Stokes equations (NSEs), partial
differential equations (PDEs).

I. INTRODUCTION

DNA microarray is a remarkably successful high-throughput tech-
nology for functional genomics [23]. Microarrays allow researchers
to collect quantitative data about the expression level of many thou-
sands of genes in a single experiment. Therefore, it offers a deep under-
standing of gene interaction and regulation. However, the microarray
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