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Recent development of depth acquiring technique has accelerated the progress of 3D
video in the market. Utilizing the acquired depth, arbitrary view frames can be generated
based on depth image based rendering (DIBR) technique in free viewpoint video system.
Different from texture video, depth sequence is mainly utilized for virtual view generation
rather than viewing. Inspired by this, a depth frame interpolation scheme using texture
information is proposed in this paper. The proposed scheme consists of a texture aided
motion estimation (TAME) and texture aided motion compensation (TAMC) to fully
explore the correlation between depth and the accompanying textures. The optimal
motion vectors in TAME and the best interpolation weights in TAMC are respectively
selected taking the geometric mapping relationship between depth and the accompany-
ing texture frames into consideration. The proposed scheme is able to not only maintain
the temporal consistency among interpolated depth sequence but also improve the
quality of virtual frames generated by interpolated depth. Besides, it can be easily applied
to arbitrary motion compensation based frame interpolation scheme. Experimental
results demonstrate that the proposed depth frame interpolation scheme is able to
improve the quality of virtual view texture frames in both subjective and objective
criterions compared with existing schemes.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, 3D video is experiencing a rapid growth
in a great number of areas including 3D cinema, 3DTV and
Free viewpoint video (FVV) [1], since it is able to provide
audiences an immersive feeling for a real world. Due to the
desirable property of enabling users to freely select their
favorite viewpoints, the application of FVV receives more
and more attention. In FVV, the selection of arbitrary view
requires multi-view video with dense camera setting for
scene capturing, which will cause a vast amount of data to
be stored or transmitted to the users. To reduce the data
volume in FVV caused by a large number of views, a new
ang).
data format multi-view video plus depth (MVD) is pro-
posed to enable virtual view synthesis [2]. For simplicity,
the color pictures and depth of MVD are called texture and
depth images in the remainder of this paper. In MVD,
dynamic scenes are captured by a limited number syn-
chronized texture and depth cameras [3,4]. Arbitrary views
can be synthesized by depth image based rendering (DIBR)
method [5] utilizing the captured texture video and the
associated depth videos.

As an important auxiliary information in MVD, the
accuracy of depth plays a critical role for the quality of
synthesized view frame. However, due to the computa-
tional and physical complexities, most methods for
capturing depth sequence, such as stereoscopic and range
sensors based systems, can only provide information at a
low frame rate, which severely limits the application of
MVD [6]. Therefore, depth frame interpolation, representing
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the process to improve the frame rate of depth sequence
by interpolating the intermediate depth frame, has become
a desirable solution to increase the temporal resolution of
acquired depth sequence.

Similar to texture videos, there exists a high temporal
consistency between adjacent depth frames, which means
the pixel intensities of the same object exhibit a high
similarity. Consequently, one direct way to perform depth
frame interpolation is to use the motion compensated
texture frame interpolation (MCTFI) methods, which
interpolate the intermediate frame along the motion
trajectory. To ensure high quality of interpolated frames,
two issues need to be addressed in MCTFI. The first is how to
obtain reliable motion trajectories (selecting the best motion
vector for each block) between the frame to-be-interpolated
and the adjacent frames. The second is how to generate the
pixels within the to-be-interpolated frame. These issues are
usually handled by motion estimation and motion compen-
sation, of which the brief introduction will be provided as
follows.

To improve the accuracy of motion vector in MCTFI,
Hann et al. [7] proposed a 3D recursive search (3DRS)
algorithm, which obtains the optimal motion vector from
spatial and temporally neighboring blocks recursively.
Choi et al. [8] proposed a bi-directional motion estimation
based on the assumption that the motion vectors referred
to the forward and backward reference frames are of the
same amplitude with reverse directions. Huang et al. [9,10]
proposed to first perform motion estimation for each block
using a small block size, followed by merging the neigh-
boring blocks with similar motion vectors into larger
blocks and re-estimating the motions for the merged
block. Kang et al. [11] proposed a method to enhance the
motion vector accuracy by using the bidirectional and
unidirectional matching ratios of blocks in the previous
and following reference frames. Wang et al. [12] explicitly
incorporated both the temporal and spatial smoothness of
the motion field in motion estimation process. Besides,
post-processing algorithms [13,14] are also proposed to
correct unreliable motion vectors after the completion of
motion estimation stage.

After assigning appropriate motion vector to each
block, the to-be-interpolated block can be generated by
motion compensation, where the reference blocks referred
to by the motion vectors in the forward and backward
reference frames are weighted averaged. However, serious
blocking artifacts may be observed at the block boundaries
due to the arbitrary shapes of the object. To relieve such
artifacts, overlapped block motion compensation (OBMC)
[15] can be introduced in MCTFI. For example, Zhai et al.
[16] proposed a method to suppress the blocking artifacts
by positioning overlapped blocks from the previous
and following frames. Although OBMC is able to generate
a much smoother interpolated frame, it may result in
blurring or over-smoothing artifacts in case of non-
consistent motion regions since fixed weights for neigh-
boring blocks are assigned. To get rid of this problem,
an adaptive OBMC [17] was proposed to tune the weights
of different blocks according to the reliability of neighbor-
ing motion vectors. In addition, auto regressive model
based MCTFI [18,19] was proposed to generate the
intermediate frame by a linear combination of pixels in a
square neighborhood in the reference frames. Recently, a
region based global and local (GL) higher-order motion
estimation [20] was proposed to derive more reliable
motion vectors. Besides, a multiple hypotheses (MH)
motion estimation [21] was proposed to obtain more
accurate motion vectors.

The aforementioned MCTFI methods can be directly
utilized to perform depth frame interpolation. However,
it is difficult to obtain true motion vector for depth frame,
since depth frame is much smoother and lacks sufficient
textures to find reliably matched blocks. To overcome this
problem, [22] and [23] proposed to share motion informa-
tion from the corresponding texture frames to perform
motion compensation for the to-be-interpolated depth
frame. Utilizing the correlation between depth frame and
the corresponding texture frame, this method is able
to obtain interpolated frame with high quality. However,
objects with the same depth values may have different
motion vectors due to the differences of textures in the
corresponding texture frames, which deteriorate the
quality of interpolated depth frame. Actually, compared
with texture frames, depth frames indicate the geometric
mapping between textures of different views in view
synthesis and they are not supposed to be viewed directly.
Consequently, we should not only consider the temporal
consistency between interpolated depth frames but the
quality of synthesized view utilizing the interpolated
depth frame. Inspired by this, we propose a texture aided
motion estimation (TAME) and texture aided motion
compensation (TAMC), where the accompanying texture
video is utilized as auxiliary information to enable the
synthesized virtual view frame with high quality. In TAME,
the block wise matching criterion consists of two ingre-
dients. The first ingredient is texture/depth discrepancy
between the blocks referred to by the candidate motion
vector within the forward and backward reference
texture/depth frames. The second ingredient represents
the texture discrepancy between pixels sharing the same
viewpoint with the processed depth and the pixels
mapped by interpolated depths resulting from the
candidate motion vector. In TAMC, the best interpolation
weights are selected from a predetermined set by mini-
mizing the texture discrepancy between the pixels within
the texture frame, having the same viewpoint with
the processed depth, and the pixels mapped by interpo-
lated depths deriving from the candidate interpolation
weights.

The novelty of this paper is as follows. Firstly, the
texture information is utilized to select the optimal motion
vector in TAME. Secondly, the texture information is
employed to select the most appropriate interpolation
weights during motion compensation in TAMC. Thirdly,
the proposed algorithms are compatible with any existing
motion compensated frame interpolation schemes. Var-
ious experimental results demonstrate that the proposed
depth frame interpolation is able to improve the quality of
synthesized texture frames in both objective and subjec-
tive criterion compared with the competing methods.

The remainder of this paper is organized as follows.
Section 2 provides a brief introduction of view projection
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in DIBR. In Section 3, the proposed TAME is investigated
in detail. Section 4 provides the detailed description of TAMC
followed by the experimental results given in Section 5.
Finally, the conclusions are given in Section 6.
2. View projection in DIBR

In DIBR, the virtual view frames are commonly synthe-
sized by the texture and depth images of neighboring
reference views. As illustrated in Fig. 1, the texture image Il
of the virtual view Viewl is synthesized by the texture
image Ik of reference view Viewk. It should be noted that
more than one reference view textures can be utilized
(for example both the left and right view texture frames)
and here we take one reference view as an example to
illustrate the view projection process.

Dented by Ikðxk; ykÞ the reference pixel located at
ðxk; ykÞ, the view projection can be expressed as

½xl; yl; zl� ¼ AlRl
�1½RkAk

�1½xk; yk;1�TZðxk; ykÞþTk�Tl�; ð1Þ

where Ak and Al denote the intrinsic parameters, Rk and Rl

denote the extrinsic rotation parameters, Tk and Tl denote
the extrinsic translation parameters, and Zðxk; ykÞ denotes
the depth value located at ðxk; ykÞ within depth frame Z.
Then, the normalized coordinate of ½xl; yl; zl� can be repre-
sented as ðxl=zl; yl=zlÞ. The disparity dðxk; ykÞ between
texture pixel Ikðxk; ykÞ and Ilðxl=zl; yl=zlÞ can be obtained
with the coordinates of these pixels. Especially, for the
rectified FVV, the parameters of the multi-view cameras
depth plane
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Fig. 1. View projection in DIBR.
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are normalized. The disparity dðxk; ykÞ can be calculated as

dðxk; ykÞ ¼
f � c

Zðxk; ykÞ
; ð2Þ

where f represents the rectified focal length of the camera
and c represents the baseline distance between adjacent
view cameras. Consequently, the DIBR operator gðxk; yk; ZÞ
can be expressed as a function of the coordinates and
depth value of each pixel in reference views, which can be
expressed as

gðxk; yk; ZÞ ¼ Ilðxk�dðxk; ykÞ; ykÞ ¼ Il xk�
f � c

Zðxk; ykÞ
; yk

� �
: ð3Þ

It should be mentioned that throughout this paper we
assume the to-be-synthesized view has the same vertical
position as the reference views and hence only x-coordi-
nates are being modified by DIBR.

Apparently, depth error results in the synthesized
pixels shifting in the virtual view images. In plain regions,
texture frames have similar pixel intensity, which means
that depth error will not cause serious distortion in the
synthesized frame. However, for the edge regions, slight
depth error may cause significant distortion in the synthe-
sized frame, since there are remarkable intensity fluctua-
tions across edges. Inspired by this, we develop a TAME
and a TAMC employing hybrid pixel intensity discrepancy
considering the synthesized distortion in virtual view
frame in the next two Sections.

3. Proposed TAME

The proposed depth frame interpolation scheme is
illustrated in Fig. 2, which consists of forward TAME,
backward TAME and TAMC. In the proposed scheme, both
the reference and synthesized texture frames are available,
while the corresponding depth frames have a lower frame
rate compared to the associate texture frames. The goal of
the proposed depth frame interpolation is to interpolate
the missing depth frame to the same frame rate of the
associate texture frames. To better capture the content
varying property of depth frame, similar to MCTFI, the
proposed depth frame interpolation is performed block by
block. It should be noted that the proposed method can be
also extended to region by region, similar to the work in
[20]. For each block or region, both forward and backward
TAME are performed to derive the forward and backward
motion vectors, respectively, followed by TAMC to gener-
ate the interpolated depth frame.

To better understand the proposed TAME, we take
forward TAME as an example in Fig. 3 to describe the
Forward
TAME

Backward
TAME

TAMC Interpolated
depth

ame interpolation.
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flowchart of TAME process. It should be noted that
the process of backward TAME is quite similar by referring
the backward reference frames. In order to select the best
motion vector from the candidate set, in forward TAME, we
introduce two distortion terms, including the distortion
between corresponding texture block and the reference
texture block as well as the distortion between pixel
set of warped pixels and the ground truth of pixel set
of warped pixels, as indicated in Fig. 3. It should be noted
that the pixel set of warped pixels can be arbitrary shapes,
and here we use block shape for the sake of illustration
convenience. Denoted by Zk the current processed depth
block of the kth view point, as indicated the left pink block
in Fig. 3, Zk;f the forward candidate depth block, as
indicated the right pink block in Fig. 3, Ik the texture block
of the kth view corresponding to processed depth block, as
indicated left red block, Ik;f the texture block of the kth view
corresponding to the forward reference depth block, as
indicated right red block, Îl and Il pixel sets of the warped
and ground truth of pixels within the lth view respectively,
as indicated the yellow blocks in Fig. 3. Inspired by [22] and
[23], we use the corresponding texture frame to search the
optimal motion vector of the processed depth frame.

For each candidate motion vector V
,

c ¼ ðVcx;VcyÞ, the
distortion between the corresponding texture pixel and
reference texture pixel can be represented as

DZ ðx; y;V
,

cÞ ¼ ‖Ikðx; yÞ� Ik;f ðxf ; yf Þ‖2

¼ ‖Ikðx; yÞ� Ik;f ðxþVcx; yþVcyÞ‖2; ð4Þ

where Ik and Ik;f represent the corresponding texture
frame and forward reference texture frame of the kth
viewpoint. It should be noted that other distortion norms
can also be utilized in Eq. (4).

Assume the interpolated depth frames are utilized
to synthesize the lth view frame, i.e., the interpolation
result is fed into the view synthesis procedure as indicated
in Eq. (3), the distortion between the pixel intensity within
synthesized lth view frame and the corresponding pixel
intensity within original lth view frame can be expressed as

DIðx; y;V
,

cÞ ¼ ‖gðx; y; Zk;f ðxþVcx; yþVcyÞÞ� Ikðx; yÞ‖2

¼ ‖Il x� f � c
Zk;f ðxþVcx; yþVcyÞ

; y
� �

� Ikðx; yÞ‖2; ð5Þ

where Zk;f ðxþVcx; yþVcyÞ represents the matched depth
pixel indicated by candidate motion vector V

,

c in the
forward reference depth frame.

Taking consistency of interpolated depth frame (Eq. (4))
and the quality of synthesized view (Eq. (5)) into account,
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the optimal candidate motion vector V
,

c should satisfy

V
,
¼ argmin

V
,

c AR
,

SðV
,

cÞþ∑ðx;yÞAΩDZ ðx; y;V
,

cÞ
� �

s:t:∑ðx;yÞAΩDIðx; y;V
,

cÞoτ;

ð6Þ
where R

,
represents the search range, Ω represents the

domain of the processing block, and SðV
,

cÞ represents the
spatial consistency penalty when selecting V

,

c as the best
motion vector.

According to Eq. (6), the optimal V
,

can be expressed as

V
,
¼ argmin

V
,

c AR
,

SðV
,

cÞþ ∑
ðx;yÞAΩ

½DZðx; y;V
,

cÞþλDIðx; y;V
,

cÞ�
( )

;

ð7Þ
where λ is a constant to make a tradeoff between the two
error terms. Obviously, applying a proper parameter λ,
Eq. (7) is able to select a motion vector which not only
maintains the temporal consistency between interpolated
depth frames but also ensures virtual frame with high
quality.
4. Proposed TAMC

In traditional motion compensation method, the inter-
polated depth frame can be generated as

Ẑkðx; yÞ ¼wf Zk;f ðxf ; yf ÞþwbZk;bðxb; ybÞ

¼wf Zk;f ðxþVf ;x; yþVf ;yÞþwbZk;bðxþVb;x; yþVb;yÞ

¼ Tb

Tf þTb
Zk;f ðxþVf ;x; yþVf ;yÞþ

Tf

Tf þTb
Zk;bðxþVb;x; yþVb;yÞ; ð8Þ

where wf and wb represent the forward and backward
interpolation weights, Vf ;x and Vb;x represent the best
forward and backward motion vectors, Tf and Tb represent
the temporal distance between the to-be-interpolated
depth frame and the forward and backward reference
frames. Such a method is able to achieve better perfor-
mance when the object moves along one line in adjacent
frames. However, the performance would get worse for the
occlusion or dis-occlusion regions. To tackle this problem,
a TAMC algorithm is proposed utilizing the view synthesis
property of depth frame in this Section.

In this paper, the backward interpolation weight wb is
defined to be wb ¼ 1�wf . And it should be noted that
other combinations of wf and wb can also be applied.
Taking wb ¼ 1�wf into Eq. (8), the depth interpolation can
be expressed as

Ẑkðx; y;V
,
;wf Þ ¼wf Zk;f ðxþVf ;x; yþVf ;yÞþwbZk;bðxþVb;x; yþVb;yÞ

¼wf Zk;f ðxþVf ;x; yþVf ;yÞþð1�wf ÞZk;bðxþVb;x; yþVb;yÞ:
ð9Þ

Given a forward interpolation weight set Ws and taking
the quality of virtual view frame into account, the optimal
forward interpolation weight parameter under the optimal
V
,

can be selected as

wn ¼ arg min
wc AWs

∑
ðx;yÞAΩ

‖gðx; y; Ẑkðx; y;V
,
;wcÞÞ� Ikðx; yÞ‖2: ð10Þ
Incorporating Eqs. (5) and (9) into Eq. (10), we have

wn ¼ arg min
wc AWs

∑
ðx;yÞAΩ

‖ Il

� x� f � c
wcZk;f ðxþVf ;x; yþVf ;yÞþð1�wcÞZk;bðxþVb;x; yþVb;yÞ

; y
� �

� Ikðx; yÞ‖2: ð11Þ
Utilizing Eq. (11), we can obtain the optimal weight for
each processing block in the depth interpolation based on
the depth and texture frame contents. Giving a proper
parameter set Ws, Eq. (11) is able to assign the best
forward and backward interpolation weights for blocks
with different characteristics adaptively. For example,
Eq. (11) is able to select a relatively larger forward inter-
polation weight for covered regions, where the frame
content is much similar to the forward reference frame.
While a smaller forward interpolation weight can be
selected automatically for uncovered regions, where
the frame content is much similar to the backward
reference frame.

5. Experimental results

In this section, various experiments are conducted to
verify the superiority of the proposed depth frame inter-
polation. Standard test sequences in MPEG 3DV [24] are
selected to carry out experiments. Every other frame of the
first 100 frames in each reference view of the test
sequences is dropped and then interpolated. Virtual views
are synthesized by view synthesis reference software,
version 3.5 (VSRS) [25] using the interpolated depth
sequence and the associate texture videos. We will first
give the effect of parameter λ in TAME and then the
interpolation comparisons will be provided.

5.1. Effect of parameter λ in TAME

In this subsection, sequences Kendo (1024�768) and
Poznan_street (1920�1088) are selected to illustrate the
effect of parameter λ in the proposed TAME. In Kendo, we
use view 1 and 5 to synthesize view 3, and in Poznan_-
street, we use view 3 and 5 to synthesize view 4. Here, we
apply the similarity measure (SM) distortion [23] in
proposed TAME and the search range is set to be 8.
It should be noted in SM, the distortion in Eq. (4) can be
rewritten as

DZðx; y;V
,

cÞ ¼
minðIkðx; yÞ; Ik;f ðxþVcx; yþVcyÞÞ
maxðIkðx; yÞ; Ik;f ðxþVcx; yþVcyÞÞ

: ð12Þ

and the distortion in Eq. (5) can be rewritten as

DI x; y;V
,

c

� �
¼

min Ikðx; yÞ; Il x� f�c
Zk;f ðxþVcx ;yþVcyÞ; y

� �� �
max Ikðx; yÞ; Il x� f�c

Zk;f ðxþVcx ;yþVcyÞ; y
� �� �: ð13Þ

Taking Eqs. (12) and (13) into consideration, the best
motion vector can be selected as

V
,
¼ argmin

V
,

c AR
,

S V
,

c

� �
þ ∑

x;yð ÞAΩ
DZ x; y;V

,

c

� �
þλDI x; y;V

,

c

� �( )
ð14Þ

The interpolation weights of the forward and backward
reference frames during motion compensation are both set to



Fig. 4. The relation between parameter λ and the average MSE of
synthesized frames utilizing the depth generated by the proposed
method. (a)The relation between parameter λ and the average MSE of
synthesized frame in Kendo utilizing the depth generated by the
proposed TAME. (b)The relation between parameter λ and the average
MSE of synthesized frame in Poznan_street utilizing the depth generated
by the proposed TAME.

Table 1
Reference and synthesized views for each test sequence.

Test sequence Reference views Synthesized view

Kendo 1–5 3
1024�768
Poznan_Street 3–5 4
1920�1088
Poznan_Hall 5–7 6
1920�1088
Café 1–5 3
1920�1080
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0.5. The interpolated depth of each reference view is then
utilized to synthesize the virtual view using VSRS [25].

Fig. 4 depicts the relation between parameter λ and the
average mean square error (MSE) of synthesized frames
over each test sequence. Here, the MSE is computed
between the original texture frame and the virtual one of
the synthesized view. The virtual frame is synthesized by
the interpolated depth frame, the accompanying texture
frame as well as the corresponding camera parameters.
In Fig. 4, it can be observed that the selection of λ plays a
significant role on the quality of the synthesized frame. The
MSE of the synthesized frame becomes smaller with the
increase of parameter λ. However, when λ is larger than 5,
the MSE has the tendency to be become a constant. This is
because when λ is too small, the quality of synthesized
texture frame plays a smaller role in the matching criterion
as indicated in Eq. (7) in TAME. With the increase of λ, the
proportion of synthesized frame quality in the matching
criterion in Eq. (7) becomes converged. Based on such
observation, λ is set to be 5 in the following experiment.

5.2. Interpolation comparisons

In this subsection, various experiments are conducted
on four test sequences, whose reference views and synthe-
sized views are depicted in Table 1. The proposed TAME
and TAMC are applied to five typical frame interpolation
frameworks: 3DRS [7], sum of square errors (SSE) criterion
[8], the SM criterion [23], the region based global and local
(GL) motion estimation [20], and the multiple hypothesis
(MH) motion estimation [21], respectively. The parameter
set Ws includes { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

The average PSNR values between the original depth
frame and the interpolated one as well as the average PSNR
values between the original texture frame and the synthe-
sized one over each test sequence are tabulated in Tables 2
and 3, respectively. Here, ME represents the traditional
motion estimation, of which the correlation between depth
frame and the associate texture frame is neglected. It can
be observed that in Table 2, there is a PSNR drop of TAME
and the combination of TAME and TAMC, compared with
traditional ME and motion compensation method. For
example, the average PSNR drop between TAME and
traditional ME can be up to 0.6 dB, 0.4 dB, 0.4 dB, 0.5 dB,
and 0.4 dB, respectively over 3DRS, SSE, SM, GL and MH
methods. This is because traditional ME only considers the
fidelity between corresponding texture frames while
neglects the quality of synthesized virtual frames.

In contrary, in Table 3, the average PSNR of TAME has a
significant improvement compared with that of traditional
ME method, e.g. the average PSNR gains can be up to
0.2 dB, 0.7 dB, 0.6 dB, 0.2 dB, and 0.4 dB over 3DRS, SSE,
SM, GL and MH methods, respectively. Another observa-
tion is that the combination of TAME and TAMC achieves
the highest performance. For example, compared with
traditional ME method, the average PSNR gains can be
up to 0.6 dB, 1.1 dB, 1.1 dB, 0.6 dB and 0.6 dB over 3DRS,
SSE, SM, GL and MH method, respectively. Comparing the
results of Tables 2 and 3, it can be concluded that the
interpolated depth frames with higher PSNR values (com-
pared with the ground truth) do not ensure the virtual
frames with higher quality. This is because the traditional
interpolation method neglects the geometric mapping
effect of depth frame during view synthesis.

The frame by frame PSNR values between the original
texture frame and synthesized one of the first 20 frames over
Poznan_street and Kendo are illustrated in Fig. 5. The baseline
ME method in traditional ME and TAME is 3DRS in Fig. 5. It
can be observed that the combination of TAME and traditional
MC outperforms the combination of traditional ME and
traditional MC in terms of PSNR values for each synthesized
frame. And the performance can be further improved sig-
nificantly when combing TAME and TAMC. Especially for the
1st frame of Poznan_street, the highest PSNR gain of
TAMEþTAMC can be up to 0.7 dB and for the 5th frame of
Kendo, the highest PSNR gain can be up to 0.9 dB when



Table 2
PSNR values of the original depth frame and interpolated one over each test sequence.

Sequence ME TAME TAMEþTAMC

3DRS SSE SM GL MH 3DRS SSE SM GL MH 3DRS SSE SM GL MH

Poznan_street 41.25 41.77 41.82 42.41 42.20 40.92 41.33 41.74 42.20 41.99 41.18 41.35 41.33 41.92 41.73
Kendo 32.48 32.44 32.54 32.92 32.70 31.86 31.98 32.06 32.50 32.36 31.87 31.98 31.99 32.48 32.30
Poznan_Hall 42.98 42.90 42.92 43.41 43.21 42.32 42.52 42.64 43.05 42.83 42.39 42.50 42.46 42.91 42.78
Cafe 36.66 37.24 37.65 38.09 37.80 35.92 36.76 36.86 37.25 37.08 35.77 36.66 36.74 37.17 36.92
Avg 38.34 38.59 38.73 39.21 38.98 37.76 38.15 38.33 38.75 38.57 37.80 38.12 38.13 38.62 38.43

Table 3
PSNR values of the original texture frame and synthesized one over each test sequence.

Sequence ME TAME TAMEþTAMC

3DRS SSE SM GL MH 3DRS SSE SM GL MH 3DRS SSE SM GL MH

Poznan_street 32.59 32.68 32.75 33.24 32.99 32.81 33.74 33.54 33.59 33.38 33.16 34.54 34.49 34.17 33.74
Kendo 34.09 34.30 34.64 35.19 34.95 34.22 35.09 35.18 35.47 35.27 34.75 35.38 35.49 35.83 35.58
Poznan_Hall 35.29 35.18 35.17 35.69 35.51 35.46 35.93 35.70 35.88 35.85 35.81 36.30 36.13 36.29 35.99
Cafe 29.17 28.72 29.24 29.84 29.74 29.34 28.93 29.63 29.78 30.10 29.62 29.17 30.01 30.13 30.10
Avg 32.79 32.72 32.95 33.49 33.29 32.96 33.42 33.51 33.68 33.65 33.34 33.85 34.03 34.11 33.85
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Fig. 5. The frame by frame PSNR values between the original texture
frame and synthesized one of the first 20 frames over Poznan_street and
Kendo. (a) The frame by frame PSNR values between the original texture
frame and synthesized one of the first 20 frames over Poznan_street.
(b) The frame by frame PSNR values between the original texture frame
and synthesized one of the first 20 frames over Kendo.
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compared with the combination of Traditional ME and
Traditional MC.

Figs. 6 and 7 depict the visual comparisons between the
synthesized texture frame and the interpolated depth
image of the 2nd frame over Poznan_street and the 19th
frame over Kendo, respectively. It should be noted that the
baseline ME methods in traditional ME and TAME are SM
and 3DRS schemes, respectively in Figs. 6 and 7. In Fig. 6(b)
and (c), strong artifacts can be observed around the edge
of windshield and significant ghost artifacts can be
observed around the head of the car. In Fig. 6(d) and (e)
both the blocking artifacts and ghost artifacts are removed
to some extent, however they are still observable. While in
Fig. 6(f) and (g), the blocking artifacts are greatly removed
and the ghost artifacts cannot be observed. In Fig. 7(b),
strong blocking artifacts can be observed and in Fig. 7(c)
strong ghost artifacts can be observed around the edge of
the wood sword. In Fig. 7(d) and (f), blocking artifacts are
greatly removed and In Fig. 7(e), ghost artifacts are
removed to some extent, but still observable. However,
in Fig. 7(g), the ghost artifacts are removed thoroughly. It
can be observed that the combination of TAME and TAMC
achieves the highest visual quality among all the compet-
ing methods. This is because the proposed TAME is able to
find better motion vector considering the geometric map-
ping effect of depth frame and the proposed TAMC can
tackle the covered and uncovered regions by adaptively
tuning the corresponding forward and backward interpo-
lation weights.

Fig. 8 illustrates the regions with equal and unequal
interpolation weights. It should be noted that the baseline
ME method is SM in Fig. 8. Here, black regions represent the
regions with equal interpolation weights (both forward and
backward interpolation weights are 0.5) and white regions



Fig. 6. Visual comparisons between the synthesized texture frame and the interpolated depth frames over Poznan_street. (a) Original texture frame,
(b) Interpolated depth frame by Traditional ME þ Traditional MC, (c) Synthesized result by Traditional MEþTraditional MC, (d) Interpolated depth frame by
TAMEþ Traditional MC, (e) Synthesized result by TAME þ Traditional MC, (f) Interpolated depth frame by TAMEþTAMC and (g) Synthesized result by
TAMEþTAMC.
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represent the regions with unequal interpolation weights. As
indicated in Fig. 8(b), the regions of unequal interpolation
weights usually appear around the edges of objects. This is
because motion compensation with equal interpolation
weights may not achieve good performance around the edge
regions, while the proposed TAMC is able to adaptively select



Fig. 7. Visual comparisons between the synthesized texture frame and the interpolated depth frames over Kendo. (a) Original texture frame,
(b) Interpolated depth frame by Traditional ME þ Traditional MC, (c) Synthesized result by Traditional MEþTraditional MC, (d) Interpolated depth frame by
TAMEþTraditional MC, (e) Synthesized result by TAME þ Traditional MC, (f) Interpolated depth frame by TAMEþTAMC and (g) Synthesized result by
TAMEþTAMC.
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the optimal interpolation weights according to the contents
of the corresponding texture regions.

5.3. Computational complexity analysis

The computational complexity of the proposed depth
frame interpolation scheme mainly concentrates on the
geometric mapping processing during TAME and TAMC. In
TAME, for each candidate motion vector, every depth pixel
within the matched depth block is first converted into a
disparity vector, and then the distortion between the original
and virtual texture pixel referred to by the converted disparity
vector is calculated. In TAMC, for each forward and backward
interpolation weight pair, the weighted depth pixel is first



Fig. 8. Illustration of interpolation regions with equal and unequal weights of the 2nd frame over Poznan_street. (a) Original texture frame. (b) Regions of
equal interpolation weights and unequal interpolation weights.

Table 4
Average processing time (sec/frame) of different depth interpolation methods.

Sequence ME TAME TAMEþTAMC

3DRS SSE SM 3DRS SSE SM 3DRS SSE SM

Poznan_street 0.827 3.126 3.451 1.419 3.893 3.983 1.852 4.752 4.521
Kendo 0.462 1.982 2.912 1.073 2.773 3.401 1.441 3.287 4.298
Poznan_Hall 0.843 3.215 3.392 1.523 3.903 4.025 1.901 4.861 4.921
Café 0.853 3.428 3.617 1.427 4.025 4.218 1.842 5.193 5.227
Avg 0.746 2.938 3.343 1.361 3.649 3.907 1.759 4.523 4.742
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converted into a disparity vector, and then distortion between
the original texture pixel and virtual pixel is calculated.

Table 4 provides the average processing time of differ-
ent depth interpolation methods, which are implemented
in C/Cþþ , on a typical computer (2.5 GHz Intel Dual Core,
4 GB Memory). It can be observed that traditional
motion estimation and motion compensation method
has the smallest average processing time. The average
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processing time of TAME is larger than that of ME, since
extra geometric mapping and distortion calculation pro-
cessing is introduced. The combination of TAME and TAMC
has the largest average processing time, since geometric
mapping and distortion calculation processing is also
implemented in TAMC. However, the average processing
time can be lowered by looking for fast optimization
algorithms or utilizing more andmore powerful computers.

6. Conclusions

In this paper, we proposed a texture aided depth frame
interpolation using texture information, based on the fact
that depth frame is utilized for view synthesis rather than
viewing. Considering the geometric mapping function of
depth during view synthesis, a texture aided motion
estimation (TAME) is devised. For each candidate motion
vector, the matching criterion consists of two parts. The
first part is the distortion between the current and
forward/backward matched texture block referred to by
candidate motion vector. The second one is the distortion
between the reference texture frame and the synthesized
texture frame resulted from matched depth block. In
addition, to further improve the quality of interpolated
depth, this paper proposes a texture aided motion com-
pensation (TAMC), where optimal interpolation weights
are selected taking into account the correlation between
depth and the accompanying texture frames. The proposed
TAME and TAMC are able to apply into any existing motion
compensated texture frame interpolation. Experimental
results verify the superiority of the proposed depth frame
interpolation scheme.

Further research could look into depth frame interpola-
tion algorithm incorporating the hole filing and boundary
noise removing in view synthesis. As FVV receives more
and more attention, we trust the proposed depth frame
interpolation would be beneficial for the development of
3D video services.
Acknowledgment

This work was partially supported by National Natural
Science Foundation of China (61170195), the Joint Funds
of National Science Foundation of China (U1301257),
the Upgrading Project of Shenzhen Key Laboratory
(JCYJ20130402164013917).

References

[1] M. Tanimoto, Overview of free viewpoint television, Signal Process.:
Image Commun. 21 (6) (2006) 454–461.

[2] P. Ndjiki-Nya, M. Koppel, D. Doshkov, H. Lakshman, P. Merkle,
K. Muller, T. Wiegand, Depth image-based rendering with advanced
texture synthesis for 3-D video, IEEE Trans. Multimed. 13 (2011)
453–465.
[3] A. Smolic, P. Kauff, Interactive 3D video representation and coding
technologies, in: Proceedings of IEEE Special Issue on Advances in
Video Coding and Delivery, vol. 93, no. 1, January 2005, pp. 98–110.

[4] A. Kubota, A. Smolic, M. Magnor, M. Tanimoto, T. Chen, C. Zhang,
Multiview imaging and 3DTV, IEEE Signal Process. Mag. 24 (6)
(2007) 10–21.

[5] H. Sawhney, Y. Guo, K. Hanna, R. Kumar, Hybrid stereo camera: an
IBR approach for synthesis of very high resolution stereoscopic
image sequences, in: Proceedings of SIGGRAPH, 2001, pp. 451–460.

[6] Y. Li, L.I. Sun, T. Xue, Fast frame rate up-conversion of depth video via
video coding, ACM Multimed. (2011) 1317–1320.

[7] G. Haan, P. Biezen, H. Huijgen, O. Ojo, True motion estimation with
3-D recursive search block matching, IEEE Trans. Circuits Syst. Video
Technol. 3 (5) (1993) 368–379.

[8] B. Choi, S. Lee, S. Ko, New frame rate up-conversion using
bi-directional motion estimation, IEEE Trans. Consumer Electron.
46 (3) (2000) 603–609.

[9] A. Huang, T. Nguyen, A multistage motion vector processing method
for motion-compensated frame interpolation, IEEE Trans. Image
Process. 17 (5) (2008) 694–708.

[10] A. Huang, T.Q. Nguyen, Correlation based motion vector processing
with adaptive interpolation scheme for motion-compensated frame
interpolation, IEEE Trans. Image Process. 18 (4) (2009) 740–752.

[11] S. Kang, S. Yoo, Y. Kim, Dual motion estimation for frame rate up-
conversion, IEEE Trans. Circuits Syst. Video Technol. 20 (12) (2010)
1909–1914.

[12] D. Wang, L. Zhang, A. Vincent, Motion-compensated frame rate up-
conversion—Part I: fast multi-frame motion estimation, IEEE Trans.
Broadcast. 56 (2) (2010) 133–141.

[13] R. Castagno, P. Haavisto, G. Ramponi, A method for motion adaptive
frame rate up-conversion, IEEE Trans. Circuits Syst. Video Technol. 6
(5) (1996) 436–446.

[14] G. Dane, T. Nguyen, Motion vector processing for frame rate up
conversion, in: Proceedings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, Quebec, Canada, 2004.

[15] M. Orchard, G. Sullivan, Overlapped block motion compensation: an
estimation-theoretic approach, IEEE Trans. Image Process. 3 (5)
(1994) 693–699.

[16] J. Zhai, K. Yu, J. Li, S. Li, A low complexity motion compensated frame
interpolation method, in: Proceedings of ISCAS, vol. 5, May 2005,
pp. 4927–4930.

[17] B. Choi, J. Han, C. Kim, S. Ko, Motion-compensated frame interpola-
tion using bilateral motion estimation and adaptive overlapped
block motion compensation, IEEE Trans. Circuits Syst. Video Technol.
17 (7) (2007) 407–416.

[18] Y. Zhang, D. Zhao, X. Ji, R. Wang, W. Gao, A spatio-temporal auto-
regressive model for frame rate up conversion, IEEE Trans. Circuits
Syst. Video Technol. 19 (9) (2009) 1289–1301.

[19] Y. Zhang, D. Zhao, S. Ma, R. Wang, W. Gao, A motion-aligned auto-
regressive model for frame rate up conversion, IEEE Trans. Image
Process. 19 (5) (2010) 1248–1258.

[20] C. Qian, I. Bajic, Frame rate up-conversion using global and local
higher-order motion, in: Proceedings of IEEE International Confer-
ence on Multimedia and Expo (ICME), July 2013, pp. 1–6.

[21] H. Liu, R. Xiong, D. Zhao, S. Ma, W. Gao, Multiple hypotheses
Bayesian frame rate up-conversion by adaptive fusion of motion
compensated interpolations, IEEE Trans. Circuits Syst. Video Technol.
22 (8) (2012) 1188–1198.

[22] J. Choi, D. Min, B. Ham, K. Sohn, Spatial and temporal up-conversion
technique for depth video, in: Proceedings of IEEE International
Conference on Image Process. (ICIP), November 2009, pp. 3525–
3528.

[23] H. Wang, C. Huang, J. Yang, Block-based depth maps interpolation
for efficient multiview content generation, IEEE Trans. Circuits Syst.
Video Technol. 21 (12) (2011) 1847–1858.

[24] Video and Requirements, Applications and Requirements on 3D
Video Coding, N12035, ISO/IEC JTC1/SC29/WG11, Switzerland, Gen-
eva, March 2011.

[25] M. Tanimoto, T. Fujii, K. Suzuki, N. Fukushima, Y. Mori, Reference
Softwares for Depth Estimation and View Synthesis, ISO/IEC JTC1/
SC29/WG11/M15377, April 2008.

http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref1
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref1
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref2
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref2
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref2
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref2
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref3
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref3
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref3
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref4
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref4
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref5
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref5
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref5
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref6
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref6
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref6
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref7
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref7
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref7
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref8
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref8
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref8
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref9
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref9
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref9
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref10
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref10
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref10
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref11
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref11
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref11
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref12
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref12
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref12
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref13
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref13
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref13
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref13
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref14
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref14
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref14
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref15
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref15
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref15
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref16
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref16
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref16
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref16
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref17
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref17
http://refhub.elsevier.com/S0923-5965(14)00084-8/sbref17

	Texture aided depth frame interpolation
	Introduction
	View projection in DIBR
	Proposed TAME
	Proposed TAMC
	Experimental results
	Effect of parameter λ in TAME
	Interpolation comparisons
	Computational complexity analysis

	Conclusions
	Acknowledgment
	References




