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Frommany fewer acquired measurements than suggested by the Nyquist sampling theory,
compressive sensing (CS) theory demonstrates that, a signal can be reconstructed with
high probability when it exhibits sparsity in some domain. Most of the conventional CS
recovery approaches, however, exploited a set of fixed bases (e.g. DCT, wavelet and
gradient domain) for the entirety of a signal, which are irrespective of the non-stationarity
of natural signals and cannot achieve high enough degree of sparsity, thus resulting in
poor CS recovery performance. In this paper, we propose a new framework for image
compressive sensing recovery using adaptively learned sparsifying basis via L0 minimiza-
tion. The intrinsic sparsity of natural images is enforced substantially by sparsely
representing overlapped image patches using the adaptively learned sparsifying basis in
the form of L0 norm, greatly reducing blocking artifacts and confining the CS solution
space. To make our proposed scheme tractable and robust, a split Bregman iteration based
technique is developed to solve the non-convex L0 minimization problem efficiently.
Experimental results on a wide range of natural images for CS recovery have shown that
our proposed algorithm achieves significant performance improvements over many
current state-of-the-art schemes and exhibits good convergence property.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

As a fundamental problem in the field of image proces-
sing, image restoration has been extensively studied in the
past two decades [1–18]. It aims to reconstruct the original
high quality image from its degraded observed version.
It has been widely recognized that image prior knowledge
plays a critical role in the performance of image restora-
tion algorithms. Therefore, designing effective regulariza-
tion terms to reflect the image priors is at the core of
image restoration.
All rights reserved.
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Classical regularization terms utilize local structural pat-
terns and are built on the assumption that images are locally
smooth except at edges. Several representative works in the
literature are half quadrature formulation [2], Mumford–Shah
(MS) model [3], and total variation (TV) models [1]. In recent
years, very impressive image processing and restoration
results have been obtained with patch-based sparse repre-
sentations calculated with dictionaries learned from natural
images [11–14]. The sparse model assumes that each patch of
an image can be accurately represented by a few elements
from a basis set called a dictionary, which is learned from
natural images [12]. Compared with traditional analytically-
designed dictionaries, such as wavelets, curvelets, and band-
lets, the learned dictionary enjoys the advantage of being
better adapted to the images, thereby enhancing the sparsity
and showing impressive performance improvement [13,14].
Another alternative significant property exhibited in natural
nsing recovery using adaptively learned sparsifying basis
g/10.1016/j.sigpro.2013.09.025i
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images is the well-known nonlocal self-similarity, which
depicts the repetitiveness of higher level patterns (e.g.,
textures and structures) globally positioned in images. A
representative work is the popular nonlocal means (NLM)
[5], which takes advantage of this image property to conduct
a type of weighted filtering for denoising tasks by means of
the degree of similarity among surrounding pixels. Later,
inspired by the success of nonlocal means (NLM) denoising
filter, a series of nonlocal regularization terms for inverse
problems exploiting nonlocal self-similarity property of nat-
ural images are emerging [10,15]. In recent works, the
sparsity and the self-similarity of natural images are usually
combined to achieve better performance [16–18].

In the field of image restoration, perhaps the hottest
topic is the recent development of Compressive Sensing
(CS) theory, which has drawn quite an amount of attention
as an alternative to the current methodology of sampling
followed by compression [19–21]. By exploiting the redun-
dancy existed in a signal, CS conducts sampling and
compression at the same time. CS theory shows that a
signal can be decoded from many fewer measurements
than suggested by the Nyquist sampling theory, when the
signal is sparse in some domain, which has greatly
changed the way engineers think of data acquisition.

In CS theory, a signal is usually sampled by a random
projection that is signal-independent and reconstructed by
minimizing the ℓ0 or ℓ1 optimization problem with the
prior that the signal is sparse in some transformation
domain. Since the ℓ0 minimization is discontinuous and
an NP-hard problem, the most common one is to use the
ℓ1 norm, which is the optimal convex approximation of ℓ0

norm and has been proved that for many problems it is
probable that the ℓ1 norm is equivalent to the ℓ0 norm in a
technical sense. This equivalence result allows one to solve
the ℓ1 problem, which is easier than the ℓ0 problem. Many
CS recovery algorithms are recently proposed: linear
programming [22], gradient projection sparse recon-
struction [23], matching pursuit [24], and iterative thresh-
olding [25].

An attractive strength of CS is that the sampling process
is made signal-independent and computationally inexpen-
sive at the cost of high reconstruction complexity. This
asymmetric design is severely desirable in some image
processing applications when the data acquisition devices
must be simple (e.g. inexpensive resource-deprived sen-
sors) [26], or when oversampling can harm the object
being captured (e.g. X-ray imaging) [27].

CS theory shows that the sparsity degree of a signal
plays a significant role in recovery. The higher degree of a
signal, the higher recovery quality it will have. So, seeking
a domain in which the signal has a high degree of sparsity
is one of the main challenges CS recovery should face.
However, natural signals such as images are typically non-
stationary, there exists no universal domain in which all
parts of the signals are sparse. The most current CS
recovery methods explore a set of fixed domains (e.g.
DCT, wavelet and gradient domain) [28,29,30,34], and
therefore are signal-independent or not adaptive, resulting
in poor CS recovery performance.

Towards this problem, Wu et al. [27] proposed a model-
guided adaptive recovery of compressive sensing (MARX)
Please cite this article as: J. Zhang, et al., Image compressive se
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utilizing a piecewise autoregressive model to adapt to the
changing second order statistics of natural images. Many
recent works incorporated additional prior knowledge
about transform coefficients (statistical dependencies,
structure, etc.) into the CS recovery framework, such
as Gaussian scale mixtures (GSM) models [31], tree-
structured wavelet (TSW) [32], tree-structured DCT
(TSDCT) [33]. Chen et al. [42] exploited multi-hypothesis
predictions to generate a residual in the domain of the
compressed-sensing random projections, where this resi-
dual being typically more compressible than the original
signal leads to improved reconstruction quality. Zhang
et al. [43,46] proposed a framework for CS recovery via
collaborative sparsity, which enforces local 2-D sparsity
and nonlocal 3-D sparsity simultaneously in an adaptive
hybrid space-transform domain.

Considering the fact that the natural image signal is
non-stationary and inspired by the recent great success of
sparse representation in image processing, in this paper,
we propose to enforce the intrinsic sparsity of a natural
image by sparsely representing its overlapped image
patches using adaptively learned sparsifying basis. All the
sparse codes of image patches constitute the adaptive
redundant sparse representation of the whole image,
which is incorporated into the optimization problem for
the whole image CS recovery in the form of ℓ0 norm,
greatly reducing blocking artifacts and confining the CS
solution space. In addition, to make our proposed scheme
tractable and robust, a split Bregman iteration based
technique is developed to solve the non-convex ℓ0 mini-
mization problem efficiently. Experimental results on a
wide range of natural images for CS recovery have shown
that our proposed algorithm is quite competitive to the
state-of-the-art methods.

The remainder of the paper is organized as follows.
Section 2 briefly reviews CS theory and introduce split
Bregman iteration algorithm. Section 3 provides our pro-
posed framework for image CS recovery using adaptive
learned sparsifying basis via ℓ0 minimization. The imple-
mentation details of optimization are elaborated in
Section 4. Experimental results are reported in Section 5.
In Section 6, we conclude this paper.

2. Background

2.1. Compressive sensing

When the signal is sparse in some domain, CS allows
exact recovery of the signal from its measurements
acquired by linear projection, whose number is much
smaller than that of the original signal. Suppose a signal
xAℝN is of size N, and its transform coefficient vector over
domain Ψ is denoted by θ, i.e. x¼Ψθ. x is said to be sparse
in Ψ , if the elements in θ, are mostly zeros, or nearly sparse
if the dominant portion of θ are either zeros or very close
to zeros. The sparsity of x in Ψ is quantified by the number
of significant elements within the coefficient vector θ.

More specifically, denote the linear measurements of x
by yAℝM , namely, y¼Φx. Here, Φ represents the random
projections, and is an M�N measurement matrix such
that M is much smaller than N. The purpose of CS recovery
nsing recovery using adaptively learned sparsifying basis
/10.1016/j.sigpro.2013.09.025i
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is to recover x from y with subrate, being S¼M/N, which
is usually formulated as the following ℓp optimization
problem:

min
θ

1
2 jjy�ΦΨθjj22þλjjθjjp; ð1Þ

where λ is non-negative parameter, and p is usually set to
1 or 0, characterizing the sparsity of the vector θ. jjnjj1 is ℓ1

norm, adding all the absolute values of the entries in a
vector, while jjnjj0 is ℓ0 norm, counting the nonzero
entries of a vector. According to Donoho [19], CS is capable
of recovering K-sparse signal x (with an overwhelming
probability) from y of size M, provided that the number
of random samples meets MZcK(N/K). The required
sampling rate (M/K), to incur lossless recovery, is roughly
proportional to (K/N). A compressive imaging camera
prototype using random projection has been presented
in [21].

2.2. Split Bregman Iteration (SBI)

In order to facilitate the discussions in the following
optimization section, this section briefly introduces the
well-known convex optimization algorithm split Bregman
iteration (SBI). Split Bregman Iteration (SBI) is recently
introduced by Goldstein and Osher [36] for solving a class
of ℓ1 related minimization problems. The basic idea of SBI
is to convert the unconstrained minimization problem into
a constrained one by introducing the variable splitting
technique and then invoke the Bregman iteration [35] to
solve the constrained minimization problem. Numerical
simulations show that it converges fast and only uses a
small memory footprint, which makes it very attractive for
large-scale problems [37].

Consider a constrained optimization problem

minuAℝN ;vAℝMfðuÞþgðvÞ; s: t:u¼ Gv ð2Þ
where GAℝN�M and f : ℝN-ℝ;g : ℝM-ℝ are convex
functions. The SBI to address problem (2) works as follows:

Algorithm 1. Split Bregman Iteration (SBI)
1.
P
v

Set t¼ 0, choose μ40; b0 ¼ 0;u0 ¼ 0; v0 ¼ 0.

2.
 Repeat

3.
 uðtþ1Þ ¼ argminufðuÞþ μ

2 ‖u�GvðtÞ �bðtÞ‖22;

4.
 vðtþ1Þ ¼ argminvgðvÞþ μ

2 ‖u
ðtþ1Þ �Gv�bðtÞ‖22;
5.
 bðtþ1Þ ¼ bðtÞ �ðuðtþ1Þ �Gvðtþ1ÞÞ;

6.
 t←tþ1;

7.
 Until stopping criterion is satisfied

In SBI, the parameter μ is fixed to avoid the problem of
numerical instabilities instead of choosing a predefined
sequence fμkg that tends to infinity. The convergence of
Split Bregman Iteration can be attested by the equivalence
between SBI and the Douglas–Rachford splitting method
(DRSM) applied to its dual problem [38].

3. Image CS recovery using adaptively learned sparsifying
basis via L0 minimization

In this section, we first introduce the patch-based
redundant sparse representation of natural images, and
lease cite this article as: J. Zhang, et al., Image compressive se
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then establish a new framework for image compressive
sensing recovery using adaptively learned sparsifying basis
via ℓ0 minimization.

3.1. Patch-based redundant sparse representation

In literature, the basic unit of sparse representation for
natural images is patch [12]. Mathematically, denote by
xAℝN and xkAℝBs the vector representations of the
original image and an image patch of size

ffiffiffiffiffi
Bs

p � ffiffiffiffiffi
Bs

p
at

location k; k¼ 1;2; :::;n. Then we have

xk ¼ Rkx; ð3Þ
where RkAℝBs�N is a matrix operator that extracts patch
xk from x. Note that patches are usually overlapped, and
such patch-based representation is highly redundant. In
Section 5, we will illustrate that the overlapped technique
and the patch-based redundant representation are signi-
ficant to achieve high recovery quality. Therefore, the
recovery of x from fxkg becomes an over-determined
system, which is straightforward to obtain the following
Least-Square solution [11]:

x¼ ð ∑
n

k ¼ 1
RT
kRkÞ�1 ∑

n

k ¼ 1
ðRT

kxkÞ; ð4Þ

which is nothing but an abstraction strategy of averaging
all the overlapped patches.

Given dictionary DAℝBs�M , the sparse coding process
of each patch xk over D is to find a sparse vector αk (i.e.,
most of the coefficients in αk are zero or close to zero) such
that xk �Dαk. Then the entire image can be sparsely
represented by the set of sparse codes fαkg.

Similar to Eq. (4), reconstructing x from its sparse codes
fαkg is formulated:

x�D ̂α¼ ð ∑
n

k ¼ 1
RT
kRkÞ�1 ∑

n

k ¼ 1
ðRT

kDαkÞ; ð5Þ

where α denotes the concatenation of all αk, that is,
α¼ ½αT

1 ;α
T
2 ; :::;α

T
n�T , which is patch-based redundant sparse

representation for x.

3.2. Image CS recovery via ℓ0 minimization

Now, incorporating Eq. (5) into Eq. (1), our proposed
scheme for image compressive sensing recovery using
adaptive learned sparsifying basis via ℓ0 minimization is
formulated as

min
α

1
2 jjy�ΦD ̂αjj22þλjjαjj0 ð6Þ

Here, D replaces Ψ in Eq. (1), standing for adaptively
learned sparsifying basis, which will be given in the next
section, and α denotes the patch-based redundant sparse
representation for the whole image over D.

As we know, since ℓ0 minimization is non-convex and
NP-hard, the usual routine is to solve its optimal convex
approximation, i.e., ℓ1 minimization, which has been
proved that, under some conditions, ℓ1 minimization is
equivalent to ℓ0 minimization in a technical sense.
The ℓ1 minimization can be solved efficiently by some
recent convex optimization algorithms, such as iterative
shrinkage/thresholding [39,40,45], and split Bregman
nsing recovery using adaptively learned sparsifying basis
g/10.1016/j.sigpro.2013.09.025i

http://dx.doi.org/10.1016/j.sigpro.2013.09.025
http://dx.doi.org/10.1016/j.sigpro.2013.09.025
http://dx.doi.org/10.1016/j.sigpro.2013.09.025


J. Zhang et al. / Signal Processing ] (]]]]) ]]]–]]]4
[36,37] algorithms. Therefore, the straightforward method
to solve Eq. (6) is translated into solving its ℓ1 convex
form, that is

min
α

1
2 jjy�ΦD ̂αjj22þλjjαjj1 ð7Þ

However, a fact that is often neglected is, for some
practical problems including image inverse problems, the
conditions guaranteeing the equivalence of ℓ0 minimiza-
tion and ℓ1 minimization are not necessarily satisfied.
Consequently, this paper proposes to exploit the frame-
work of convex optimization algorithms to solve the non-
convex ℓ0 minimization, i.e., Eq. (6) directly. Experimental
results demonstrate the effectiveness and the convergence
of our proposed approach.

4. Optimization for proposed L0 minimization

In this paper, we adopt the framework of split Bregman
iteration (SBI) [37] to solve Eq. (6), which is verified to be
more effective than iterative shrinkage/thresholding (IST)
[39] in our experiments (see Section 5 for more details).
The developed optimization details to solve the proposed
ℓ0 minimization problem effectively and efficiently are
given in this section.

According to SBI in Section 2, the original minimization
problem (2) is split into two sub-problems. The rationale
behind is that each sub-problem minimization may be
much easier than the original problem (2).

Now, let us go back to Eq. (6) and point out how to
apply the framework of SBI to solve it. By introducing a
variable u, we first transform Eq. (6) into an equivalent
constrained form, i.e.,

min
α;u

1
2 ‖y�Φu‖22þλ‖α‖0; s:t: u¼D ̂α ð8Þ

Define f ðuÞ ¼ 1
2 ‖y�Φu‖22; gðαÞ ¼ λ‖α‖0:

Then, invoking SBI, Line 3 in Algorithm 1 becomes

uðtþ1Þ ¼ arg min
u

1
2 ‖y�Φu‖22þ μ

2 ‖u�D ̂αðtÞ �bðtÞ‖22: ð9Þ

Next, Line 4 in Algorithm 1 becomes

αðtþ1Þ ¼ argminαλ‖α‖0þ μ
2 ‖u

ðtþ1Þ �D ̂α�bðtÞ‖22: ð10Þ

According to Line 5 in Algorithm 1, the update of bðtÞ is

bðtþ1Þ ¼ bðtÞ �ðuðtþ1Þ �D ̂αðtþ1ÞÞ: ð11Þ
Thus, by SBI, the minimization for Eq. (6) is trans-

formed into solving two sub-problems, namely, u;α sub-
problems. In the following, we will provide the imple-
mentation details to obtain the efficient solutions to each
separated sub-problem. For simplicity, the subscript t is
omitted without confusion.

4.1. u Sub-problem

Given x, the u sub-problem denoted by Eq. (9) is
essentially a minimization problem of strictly convex
quadratic function, that is

minuQ1ðuÞ ¼minu
1
2 ‖y�Φu‖22þ μ

2 ‖u�D ̂α�b‖22: ð12Þ
Please cite this article as: J. Zhang, et al., Image compressive se
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Setting the gradient of Q1ðuÞ to be zero gives a closed
solution for Eq. (12), which can be expressed as

û¼ ðΦTΦþμIÞ�1q; ð13Þ
where q¼ΦTyþμðD ̂αþ bÞ; I is identity matrix.

As for image compressive sensing (CS) recovery, how-
ever, Φ is a random projection matrix without special
structure. Thus, it is too costly to solve Eq. (12) directly by
Eq. (13). Here, to avoid computing the matrix inverse, the
gradient descent method is utilized to solve Eq. (12) by
applying

û¼ u�ηd; ð14Þ
where d is the gradient direction of the objective function
Q1ðuÞ and η represents the step. Therefore, solving u sub-
problem for image CS recovery only requires computing
the following equation iteratively:

û¼ u�ηðΦTΦu�ΦTyþμðu�D ̂α�bÞÞ; ð15Þ
where ΦTΦ and ΦTy can be calculated before, making
above computation more efficient. As a matter of fact, in
our implementation, one iteration is accurate enough.
4.2. α Sub-problem

Given u, according to Eq. (10), the α sub-problem can be
formulated as

minαQ2ðαÞ ¼minα
1
2 ‖D ̂α�r‖22þ λ

μ ‖α‖0; ð16Þ

where r¼ u�b.
Note that it is difficult to solve Eq. (16) directly due to

the complicated definition of α. Instead, we make some
transformation. Let x¼D ̂α, then Eq. (16) equally becomes

minα
1
2 ‖x�r‖22þ λ

μ ‖α‖0: ð17Þ

To enable a tractable solution to Eq. (17), in this paper, a
general assumption is made. Concretely, we regard r as
some type of the noisy observation of x, denote the error
vector by e¼ x�r, and then make an assumption that each
element of e follows an independent zero-mean distribu-
tion with the same variance s2: It is worth emphasizing
that the above assumption does not need to be Gaussian
process, which is more general and reasonable. By this
assumption, we can prove the following conclusion.

Theorem 1. Let x; rAℝN; xk; rkAℝBs , and denote the error
vector by e¼ x�r and each element of e by eðjÞ; j¼ 1; :::;N:
Assume that eðjÞ is independent and comes from a distribu-
tion with zero mean and variance s2: Then, for any ε40, we
have the following property to describe the relationship
between ‖x�r‖22 and ∑n

k ¼ 1‖xk�rk‖22, that is,

lim
N-1
K-1

P
n���1N ‖x�r‖22� 1

K ∑
n

k ¼ 1
‖xk�rk‖22

���oε
o
¼ 1; ð18Þ

where PðU Þ represents the probability and K ¼ Bs � n.

Proof. Due to the assumption that each eðjÞ is indepen-
dent, we obtain that each eðjÞ2 is also independent. Since
E½eðjÞ� ¼ 0 and Var½eðjÞ� ¼ s2, we have the mean of each
nsing recovery using adaptively learned sparsifying basis
/10.1016/j.sigpro.2013.09.025i
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eðjÞ2, which is expressed as

E½eðjÞ2� ¼ Var½eðjÞ�þ½E½eðjÞ��2 ¼ s2; j¼ 1; :::;N: ð19Þ
By invoking Law of Large Numbers in probability theory,

for any ε40, it yields limN-1Pfj 1=N� �PN
j ¼ 1 eðjÞ2�s2jo

ε=2
� �g ¼ 1;i.e.,

lim
N-1

P 1
N :x�r:22�s2 o ε

2

�� �¼ 1:
���n ð20Þ

Further, let xP ; rP denote the concatenation of all the
patches xk and rk,k¼ 1;2; :::;n, respectively, and denote
each element of xP�rP by ePðiÞ; i¼ 1; :::;K . Due to the
assumption, we conclude that ePðiÞ is independent with
zero mean and variance s2:
Therefore, the same manipulations with Eq. (20) applied

to ePðiÞ2 lead to limK-1Pfj 1=K� �PK
i ¼ 1 ePðiÞ2�s2jo

ε=2
� �g ¼ 1, namely,

lim
K-1

P

(�����1K ∑
n

k ¼ 1
:xk�rk:

2
2�s2

�����o ε
2

)
¼ 1: ð21Þ

Considering Eqs. (20) and (21) together, we prove
Eq. (18). □

According to Theorem 1, there exists the following
equation with very large probability (limited to 1) at each
iteration t:

1
N ‖x

ðtÞ �rðtÞ‖22 ¼ 1
K ∑

n

k ¼ 1
‖xðtÞk �rðtÞk ‖22: ð22Þ

Next, by incorporating Eq. (22) into Eq. (17), it yields

minα
1
2 ∑

n

k ¼ 1
‖xk�rk‖22þ λK

μN ‖α‖0

¼minα
1
2 ∑

n

k ¼ 1
‖xk�rk‖22þ λK

μN ∑
n
k ¼ 1‖αk‖0

¼minα ∑
n

k ¼ 1

1
2 ‖xk�rk‖22þτ‖αk‖0
� �

; ð23Þ

where τ¼ ðλKÞ=ðμNÞ.
It is obvious to see that Eq. (23) can be efficiently

minimized by solving n sub-problems for all the over-
lapped patches xk. Each patch based sub-problem is
formulated as:

argminαk
1
2 ‖xk�rk‖22þτ‖αk‖0

¼ argminαk
1
2 ‖Dαk�rk‖22þτ‖αk‖0 ð24Þ

Obviously, Eq. (24) can also be considered as the sparse
coding problem. To achieve high sparsity, we directly solve
the constrained form of Eq. (24), i.e.,

minαk jjαkjj0 s:t: jjDαk�rkjj22rδ; ð25Þ
where ω is a control factor and δ¼ωτ.

Note that Eq. (25) can be achieved efficiently by
orthogonal matching pursuit (OMP) algorithm [24]. This
process is applied for all n overlapped patches to achieve α̂,
which is the final solution for α sub-problem in Eq. (16).

4.3. Adaptive sparsifying basis learning

The key of the sparse representation modeling lies in
the choice of dictionary or sparsifying basis D. In other
words, how to seek the best domain to sparsify a given
Please cite this article as: J. Zhang, et al., Image compressive se
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image? Much effort has been devoted to learning a
redundant sparsifying basis from a set of training example
image patches. To be concrete, given a set of training
image patches S ¼ ½s1; s2; :::; sJ �, the goal of sparsifying basis
learning is to jointly optimize the sparsifying basis D and
the representation coefficients matrix Λ¼ ½α1;α2; :::;αJ �
such that sk ¼Dαk and jjαkjjprL, where p is 0 or 1. This
can be formulated by the following minimization problem:

ðD̂; Λ̂Þ ¼ arg min
D;Λ

∑
J

k ¼ 1
‖sk�Dαk‖22 s:t:jjαkjjprL; 8k: ð26Þ

Apparently, the above minimization problem in Eq. (26)
is large-scale and highly non-convex even when p is 1. To
make it tractable and solvable, some approximation
approaches, including MOD [41] and K-SVD [12], have
been proposed to optimize D and Λ alternatively, leading
to many state-of-the-art results in image processing.

In order to achieve adaptive sparsifying basis, the train-
ing image patches usually come from the original image.
Nonetheless, in practice, the original image x is not
available, while we only have access to the CS measure-
ments in Eq. (1). Such a problem with chicken-and-egg
flavor is usually solved by an iterative way in which we
obtain the estimate of x and D alternately [17]. Because r in
Eq. (17) is regarded as a good approximation of x at each
iteration, in this paper, we conduct adaptive sparsifying
basis learning using all the patches extracted from r. Due
to its effectiveness and efficiency, K-SVD is adopted as the
adaptive sparsifying basis learning method. More details
about K-SVD can be found in [12].

4.4. Summary of proposed algorithm

So far, all issues in the process of handing the above
two sub-problems have been solved. In fact, we acquire
the efficient solution for each sbeparated sub-problem,
which enables the whole algorithm more efficient and
effective. In light of all derivations above, a detailed
description of the proposed framework for image CS
recovery using adaptive sparsifying basis via ℓ0 minimiza-
tion is provided in Table 1.

5. Experimental results

In this section, experimental results are presented to
evaluate the performance of our proposed framework for
image CS recovery using adaptive sparsifying basis via ℓ0

minimization. Six test images are shown in Fig. 1. In our
experiments, the CS measurements are obtained by apply-
ing a Gaussian random projection matrix to the original
image signal at block level, i.e., block-based CS with block
size of 32�32. The default parameter setting of proposed
scheme is as follows: the size of each patch, i.e.,

ffiffiffiffiffi
Bs

p � ffiffiffiffiffi
Bs

p

is 8�8, and the size of sparsifying basis is 256. μ is set to
be 2.5e�3, η is set to be 1, and ω is set to be 2. The value of
λ is related to the overlapped step size, which will be given
in the following. All the experiments are performed in
Matlab 7.12.0 on a Dell OPTIPLEX computer with Intel(R)
Core(TM) 2 Duo CPU E8400 processor (3.00 GHz), 3.25G
memory, and Windows XP operating system.
nsing recovery using adaptively learned sparsifying basis
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Table 1
A complete description of proposed framework for image CS recovery.

Input: the CS measurements y and the random projection operator Φ

Initialization: t ¼ 0;uð0Þ ¼ 0;bð0Þ ¼ 0;αð0Þ ¼ 0;Bs; η;ω; λ; μ;
Repeat

Update uðtþ1Þ by uðtþ1Þ ¼ uðtÞ �ηðΦTΦuðtÞ �ΦTyþμðuðtÞ �DðtÞα̂ðtÞ �bðtÞÞÞ;
rðtþ1Þ ¼ uðtþ1Þ �bðtÞ; τ¼ ðλKÞ=ðμNÞ;
Update Dðtþ1Þ by Dðtþ1Þ ¼ argminD

PJ
k ¼ 1 ‖r

ðtþ1Þ
k �Dαk‖22 s:t: jjαkjjprL; 8k;

δ¼ωτ;
for Each patch xGk

Reconstruct α̂ðtþ1Þ
k by computing α̂ðtþ1Þ

k ¼ argminαk
jjαkjj0 s:t: jjDαk�rkjj22rδ;

end for

Update α̂ðtþ1Þ by concatenating all α̂ðtþ1Þ
k ;

Update bðtþ1Þ by computing bðtþ1Þ ¼ bðtÞ �ðuðtþ1Þ �Dðtþ1Þα̂ðtþ1ÞÞ;
t←tþ1;

Until maximum iteration number is reached
Output: Final restored image x̂¼Dα̂:

Fig. 1. Six experimental test images. (Due to the limit of space, only parts of the experimental results are shown in this paper. Please enlarge and view the
figures on the screen for better comparison.)
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Fig. 2. Comparison of image CS recovery with different overlapped step size for three test images in the case of subrate¼30%.
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5.1. Effect of overlapped step size

The overlapped step size is defined as the distance
between two adjacent patches to be processed. If the
overlapped step size is the same as the patch size, all the
patches are non-overlapped. If the overlapped step size is
equal to one, it means the difference between two adja-
cent patches in the horizontal (or vertical) direction is only
one column (or row). We first discuss the effect of over-
lapped step size to the CS recovery quality.

In Fig. 2, the performance comparisons of various
overlapped step sizes for two test images in the cases of
image CS recovery with subrate¼30% are provided.
Obviously, the results illustrate that smaller overlapped
step size provides higher quality of processed images. This
is mainly because more estimates are generated for the
image with smaller overlapped step sizes, which further
demonstrates the effectiveness of the patch-based redun-
dancy representation for natural images. In addition, the
Please cite this article as: J. Zhang, et al., Image compressive se
via L0 minimization, Signal Processing (2013), http://dx.doi.org
overlapped strategy takes advantage of the correlations
between blocks to depress the blocking artifacts. There-
fore, in the following experiments, the overlapped step
size is set be to 1. Furthermore, we have the relationship
K¼ 64N. Accordingly, in our test the parameter λ is
empirically set to be 1.4e�3.

5.2. Effect of sparsifying basis selection

In this sub-section, we will show the effect of sparsify-
ing basis selection to the image CS recovery. Three types of
sparsifying basis selections are given. The first one is to
choose the fixed over-complete DCT basis, as shown in
Fig. 3(a). The second one is to choose the global sparsifying
basis, which is learned from a large set of natural images,
as shown in Fig. 3(b). The last one is to choose the
suggested sparsifying basis in our paper, which is adap-
tively learned from the processed image at each iteration.
Fig. 3(c) shows the adaptively learned sparsifying basis for
nsing recovery using adaptively learned sparsifying basis
/10.1016/j.sigpro.2013.09.025i
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Fig. 3. Display of three types of sparsifying basis. From left to right: the fixed over-complete DCT basis; the globally learned sparsifying basis from a large
set of natural images; the adaptively learned sparsifying basis from the processed image at last iteration with respect to image House in the case of
subrate¼20%.

Fig. 4. Visual comparison of image CS recovery using different types of sparsifying basis for image House in the case of subrate¼20%. From left to right: the
recovered image by over-complete DCT basis (PSNR¼33.97 dB); the recovered image by globally learned sparsifying basis (PSNR¼34.62 dB); the recovered
image by the adaptively learned sparsifying basis at each iteration (PSNR¼35.86 dB).
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image House at last iteration. Fig. 4 provides the CS
recovery results for image House in the case of sub-
rate¼20% using three different sparsifying basis. From
Fig. 4, it is clear to see that the recovered result by globally
learned sparsifying basis is better than the one by fixed
over-complete DCT basis. However, the adaptively learned
sparsifying basis produces the best result, preserving
sharper edges and finer details, which verifies the super-
iority of the proposed adaptively learned sparsifying basis
for image CS recovery.
5.3. Comparison between SBI and IST

In previous works [30,31], the ℓ0 minimization non-
convex optimizations for image CS recovery are usually
solved by iterative hard-thresholding algorithm [40,45],
which can be regarded as a special type of iterative
shrinkage/thresholding (IST) algorithm [39]. Specifically,
consider the following general optimization problem

minuAℝN fðuÞþgðuÞ; ð27Þ

where fðuÞ is a smooth convex function with gradient
which is Lipschitz continuous, and gðuÞ is a continuous
convex function which is possibly non-smooth. The IST
algorithm to solve problem (27) with constant step ρ is
Please cite this article as: J. Zhang, et al., Image compressive se
via L0 minimization, Signal Processing (2013), http://dx.doi.or
formulated as

rðtþ1Þ ¼ uðtÞ �ρ∇f ðuðtÞÞ; ð28Þ

uðtþ1Þ ¼ argminu
1
2 ‖u�rðtþ1Þ‖22þλgðuÞ: ð29Þ

Then, applying IST to solve our proposed non-convex ℓ0

minimization Eq. (6) with the constraint u¼D ̂α can be
expressed as the following iterations:

uðtÞ ¼DðtÞ ̂αðtÞ; ð30Þ

rðtþ1Þ ¼ uðtÞ �ρΦT ðΦuðtÞ �yÞ; ð31Þ

αðtþ1Þ ¼ argminα
1
2 ‖D ̂α�rðtþ1Þ‖22þλ α j0:

������ ð32Þ
It is obvious to observe that Eq. (32) is equivalent to the

above α sub-problem in Section 4.2, which can be solved
efficiently. Hence, it is tractable to address Eq. (6) with IST
algorithm.

Note that applying the convex optimization algorithm
SBI to solve our proposed non-convex ℓ0 minimization is
one of the main contributions of this paper. Here, we make
a comparison between SBI and IST in our proposed image
CS recovery framework using adaptively learned sparsifying
basis. Take the cases of image CS recovery with subrate¼30%
for two gray images Leaves and Vessels as examples. Fig. 5
plots their progression curves of the PSNR (dB) results
nsing recovery using adaptively learned sparsifying basis
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Fig. 5. Comparison between SBI and IST for solving our proposed ℓ0 minimization Eq. (6). From left to right: progression of the PSNR (dB) results achieved
by proposed ℓ0 minimization with respect to the iteration number for gray images Leaves and Vessels in the cases of image CS recovery with subrate¼30%.
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error for SBI; Right: magnitude of recovery error for IST.
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achieved by solving proposed ℓ0 minimization with SBI and
IST. The result achieved by proposed ℓ0 minimization with
SBI is denoted by SBI (red solid line), while the result
achieved by proposed ℓ0 minimization with IST is denoted
by IST (black dotted line). Obviously, SBI is more efficient
and effective to solve our proposed ℓ0 minimization pro-
blem than IST, with more than 2 dB and 3 dB gains for
images Leaves and Vessels. The visual comparison of image
CS recovery between SBI and IST for image Leaves is shown
in Fig. 6. It is apparent that the magnitude of the image CS
recovery error (with respect to the original image) by SBI is
much lower than that by IST, which fully demonstrates the
superiority of SBI over IST for solving the proposed non-
convex ℓ0 minimization.

5.4. Comparison with state-of-the-art algorithms

Our proposed algorithm is compared with four repre-
sentative CS recovery methods in literature, i.e., wavelet
method (DWT) [30], total variation (TV) method [29],
multi-hypothesis (MH) method [42], collaborative sparsity
(CoS) method [43], which deal with image signals in the
wavelet domain, the gradient domain, the random projec-
tion residual domain, and the hybrid space-transform
Please cite this article as: J. Zhang, et al., Image compressive se
via L0 minimization, Signal Processing (2013), http://dx.doi.org
domain, respectively. Here, the wavelet basis for DWT
algorithm for CS recovery is ubiquitous biorthogonal 9-7.
It is worth emphasizing that MH and CoS are known as the
current state-of-the-art algorithms for image CS recovery.
Our Matlab code and all the experimental results can be
downloaded at the website: http://idm.pku.edu.cn/staff/
zhangjian/ALSB/.

To evaluate the quality of the reconstructed image, in
addition to Peak Signal to Noise Ratio (PSNR, unit: dB),
which is used to evaluate the objective image quality, a
recently proposed powerful perceptual quality metric
Feature SIMilarity (FSIM) [44] is calculated to evaluate
the visual quality. The higher FSIM value means the better
visual quality. The PSNR and FSIM comparisons for six gray
test images in the cases of 20–40% measurements are
provided in Tables 2 and 3, respectively. Our proposed
algorithm achieves the highest PSNR and FSIM among the
five comparative algorithms in most cases, which can
improve roughly 6.2 dB, 5.5 dB, 2.6 dB, and 2.0 dB on
average, in comparison with DWT, TV, MH, CoS, respec-
tively, greatly improving existing image CS recovery
results.

Some visual results of the recovered images by various
algorithms are presented in Figs. 7–11. Obviously, DWT
nsing recovery using adaptively learned sparsifying basis
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Table 2
PSNR comparisons with various CS recovery methods (Unit: dB).

Subrate Algorithms House Barbara Leaves Monarch Parrot Vessels Avg.

20% DWT 30.70 23.96 22.05 24.69 25.64 21.14 24.70
TV 31.44 23.79 22.66 26.96 26.6 22.04 25.59
MH 33.60 31.09 24.54 27.03 28.06 24.95 28.21
CoS 34.34 26.60 27.38 28.65 28.44 26.71 28.69
Proposed 35.86 31.61 27.15 28.23 29.56 30.14 30.43

30% DWT 33.60 26.26 24.47 27.23 28.03 24.82 27.40
TV 33.75 25.03 25.85 30.01 28.71 25.13 28.08
MH 35.54 33.47 27.65 29.18 31.20 29.36 31.07
CoS 36.69 29.49 31.02 31.38 30.39 31.35 31.72
Proposed 38.15 34.73 31.10 31.48 32.24 34.60 33.72

40% DWT 35.69 28.53 26.82 29.58 30.06 29.53 30.03
TV 35.56 26.56 28.79 32.92 30.54 28.14 30.42
MH 37.04 35.20 29.93 31.07 33.21 33.49 33.32
CoS 38.46 32.76 33.87 33.98 32.55 33.95 34.26
Proposed 40.13 37.16 34.66 34.33 34.38 38.27 36.49

Table 3
FSIM comparisons with various CS recovery methods.

Subrate Algorithms House Barbara Leaves Monarch Parrot Vessels Avg.

20% DWT 0.9029 0.8547 0.7840 0.8155 0.9161 0.8230 0.8494
TV 0.9051 0.8199 0.8553 0.8870 0.9018 0.8356 0.8675
MH 0.9370 0.9419 0.8474 0.8707 0.9332 0.8756 0.9010
CoS 0.9326 0.8742 0.9304 0.9171 0.9282 0.9214 0.9259
Proposed 0.9542 0.9487 0.9106 0.8879 0.9433 0.9499 0.9324

30% DWT 0.9391 0.8980 0.8314 0.8628 0.9445 0.8924 0.8947
TV 0.9384 0.8689 0.9092 0.9279 0.9329 0.9011 0.9131
MH 0.9546 0.9614 0.8993 0.9003 0.9529 0.9360 0.9341
CoS 0.9592 0.9267 0.9606 0.9449 0.9490 0.9664 0.9511
Proposed 0.9722 0.9716 0.9509 0.9328 0.9622 0.9775 0.9612

40% DWT 0.9576 0.9327 0.8741 0.9011 0.9588 0.9467 0.9285
TV 0.9574 0.9088 0.9442 0.9538 0.9530 0.9441 0.9436
MH 0.9676 0.9727 0.9276 0.9217 0.9651 0.9677 0.9537
CoS 0.9724 0.9618 0.9744 0.9637 0.9627 0.9784 0.9689
Proposed 0.9817 0.9829 0.9736 0.9567 0.9735 0.9886 0.9762
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and TV generate the worst perceptual results. The CS
recovered images by MH and CoS possess much better
visual quality than those of DWT and TV, but still suffer
from some undesirable artifacts, such as ringing effects
and lost details. The proposed algorithm not only elim-
inates most of the ringing effects, but also preserves much
sharper edges and finer details, showing much clearer and
better visual results than the other competing methods.
The high performance is attributed to the proposed ℓ0

minimization, offering a powerful mechanism of charac-
terizing the intrinsic sparsity of natural images by the
redundant patch-based sparse representation using adap-
tively learned sparsifying basis, which is further solved
efficiently by the proposed SBI based iterative techniques.
Our work also offers a fresh and successful instance to
corroborate the CS theory applied for natural images.

5.5. Algorithm complexity and computational time

The complexity of the proposed algorithm is provided
as follows. The solution to Problem (26) involves learning
the adaptive sparsifying basis from a fraction of all N
patches and exploiting it to obtain sparse approximations
of the N patches. The sparsifying basis step utilizes the
Please cite this article as: J. Zhang, et al., Image compressive se
via L0 minimization, Signal Processing (2013), http://dx.doi.or
K-SVD algorithm and OMP for sparse coding. The compu-
tation is dominated by sparse coding which scales as
OðnJLTBsÞ, where T is the number of iterations in learning
and J is the size of sparsifying basis. The costs of sparse
coding all N patches by adaptively learned sparsifying
basis is OðnJLBsÞ. For a 256�256 image, the proposed
algorithm requires about 8–9 min for CS recovery, on an
Intel Core2 Duo 3.25G PC under Matlab R2011a environ-
ment. Finally, we provide the computational time compar-
isons with various algorithms for Image House at different
CS subrates in Table 4. It is obvious to conclude that the
main complexity comes from the dictionary learning
process. To speed up the proposed algorithm, more effi-
cient and effective dictionary learning methods can be
exploited.

5.6. Algorithm convergence

Since the objective function (6) is non-convex, it is
difficult to give its theoretical proof for global convergence.
Here, we only provide empirical evidence to illustrate the
good convergence of the proposed algorithm. Fig. 12 plots
the evolutions of PSNR versus iteration numbers for
four test images with various subrates (subrate¼30% and
nsing recovery using adaptively learned sparsifying basis
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Fig. 7. Visual quality comparison of image CS recovery on gray image Barbara in the case of subrate¼20%. From left to right and top to bottom: original
image, the CS recovered images by DWT (PSNR¼23.96 dB; FSIM¼0.8547), TV (PSNR¼23.79 dB; FSIM¼0.8199), MH (PSNR¼31.09 dB; FSIM¼0.9419), CoS
(PSNR¼26.60 dB; FSIM¼0.8742) and the proposed algorithm (PSNR¼31.61 dB; FSIM¼0.9487).

Fig. 8. Visual quality comparison of image CS recovery on gray image House in the case of subrate¼20%. From left to right and top to bottom: original
image, the CS recovered images by DWT (PSNR¼30.70 dB; FSIM¼0.9029), TV (PSNR¼31.44 dB; FSIM ¼0.9051), MH (PSNR¼33.60 dB; FSIM¼0.9370), CoS
(PSNR¼34.34 dB; FSIM¼0.9326) and the proposed algorithm (PSNR¼35.86 dB; FSIM¼0.9542).
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subrate¼40%). It is observed that with the growth of
iteration number, all the PSNR curves increase monotoni-
cally and ultimately become flat and stable, exhibiting
Please cite this article as: J. Zhang, et al., Image compressive se
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good convergence property. Note that due to non-con-
vexity of Eq. (6), it is natural that there are some perturba-
tions in the curves.
nsing recovery using adaptively learned sparsifying basis
/10.1016/j.sigpro.2013.09.025i

http://dx.doi.org/10.1016/j.sigpro.2013.09.025
http://dx.doi.org/10.1016/j.sigpro.2013.09.025
http://dx.doi.org/10.1016/j.sigpro.2013.09.025


Fig. 9. Visual quality comparison of image CS recovery on gray image Vessels in the case of subrate¼20%. From left to right and top to bottom: original
image, the CS recovered images by DWT (PSNR¼21.14 dB; FSIM¼0.8230), TV (PSNR¼22.04 dB; FSIM ¼0.8356), MH (PSNR¼24.95 dB; FSIM¼0.8756), CoS
(PSNR¼26.71 dB; FSIM¼0.9214) and the proposed algorithm (PSNR¼30.14 dB; FSIM¼0.9499).

Fig. 10. Visual quality comparison of image CS recovery on gray image Leaves in the case of subrate¼30%. From left to right and top to bottom: original
image, the CS recovered images by DWT (PSNR¼24.47 dB; FSIM¼0.8314), TV (PSNR¼25.85 dB; FSIM¼0.9092), MH (PSNR¼27.65 dB; FSIM¼0.8993), CoS
(PSNR¼31.02 dB; FSIM¼0.9606) and the proposed algorithm (PSNR¼31.10 dB; FSIM¼0.9509).

Please cite this article as: J. Zhang, et al., Image compressive sensing recovery using adaptively learned sparsifying basis
via L0 minimization, Signal Processing (2013), http://dx.doi.org/10.1016/j.sigpro.2013.09.025i
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Fig. 11. Visual quality comparison of image CS recovery on gray image Monarch in the case of subrate¼30%. From left to right and top to bottom: original
image, the CS recovered images by DWT (PSNR¼27.23 dB; FSIM¼0.8628), TV (PSNR¼30.01 dB; FSIM¼0.9279), MH (PSNR¼29.18 dB; FSIM¼0.9003), CoS
(PSNR¼31.38 dB; FSIM¼0.9449) and the proposed algorithm (PSNR¼31.48 dB; FSIM¼0.9328).

Table 4
Computational time comparisons with various algorithms (Unit: s).

Image Subrate DWT TV MH CoS Proposed

House (256�256) 20% 12.6 9.9 21.6 315.9 354.5
30% 8.1 8.1 46.7 245.6 339.1
40% 5.9 7.5 27.2 216.8 330.4

Average 8.9 8.5 31.9 259.5 341.7
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Fig. 12. Convergence of the proposed algorithm. From left to right: Progression of the PSNR (dB) results achieved by proposed algorithm for four test
images with respect to the iteration number in the cases of subrate¼30% and subrate¼40%.
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6. Conclusion

In this paper, we propose to characterize the intrinsic
sparsity of natural images by patch-based redundant
Please cite this article as: J. Zhang, et al., Image compressive se
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sparse representation using adaptively learned sparsifying
basis. This particular type of spare representation is
formulated by non-convex ℓ0 minimization for image
compressive sensing recovery, which can be efficiently
nsing recovery using adaptively learned sparsifying basis
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solved by the developed split Bregman iteration based
technique. Experimental results on a wide range of natural
images for CS recovery have shown that our proposed
algorithm achieves significant performance improvements
over many current state-of-the-art schemes and exhibits
good convergence property.
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