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ABSTRACT 

 
Most existing image denoising algorithms can only deal 
with a single type of noise, which violates the fact that the 
noisy observed images in practice are often suffered from 
more than one type of noise during the process of 
acquisition and transmission. In this paper, we propose a 
new variational algorithm for mixed Gaussian-impulse noise 
removal by exploiting image local consistency and nonlocal 
consistency simultaneously. Specifically, the local 
consistency is measured by a hyper-Laplace prior, enforcing 
the local smoothness of images, while the nonlocal 
consistency is measured by three-dimensional sparsity of 
similar blocks, enforcing the nonlocal self-similarity of 
natural images. Moreover, a Split-Bregman based technique 
is developed to solve the above optimization problem 
efficiently. Extensive experiments for mixed Gaussian plus 
impulse noise show that significant performance 
improvements over the current state-of-the-art schemes have 
been achieved, which substantiates the effectiveness of the 
proposed algorithm. 
 

Index Terms— Image denoising, local and nonlocal 
consistency, mixed noise removal, Gaussian-impulse noise 

 
1. INTRODUCTION 

 
Image denoising is highly demanded in the field of image 
processing, since noise is usually inevitable during the 
process of image acquisition and transmission, which 
significantly degrades the image visual quality and increases 
the difficulty in the high-level image analysis [1-4]. 

There exist two different types of noise that are 
commonly encountered in real world: additive Gaussian 
noise and impulse noise. In literatures, there are numerous 
denoising methods that have been proposed separately for 
restoring images corrupted by either impulse noise or 
Gaussian noise. Here gives a brief review on the two types 
of noise, respectively.  

Additive Gaussian noise is usually generated during 
image acquisition and characterized by adding each image 
pixel a value from a zero-mean Gaussian distribution. It is 
utilized to model thermal noise, and under certain conditions 
it is also the limit of other noises, such as photon counting 
noise and film grain noise. For Gaussian noise removal, we 

refer readers to [4] for a comprehensive review on the 
developments of additive Gaussian noise removal methods. 
It is important to stress that sparsity-based and non-local 
schemes have emerged as promising approaches with very 
impressive denoising results for Gaussian noise [12-14]. 

Impulse noise is often introduced by malfunctioning 
pixels in camera sensors, faulty memory locations in 
hardware, or transmission in a noisy channel, which can be 
classified into two categories, namely salt-and-pepper noise 
and random-valued impulse noise [20]. Specifically, for 
images corrupted by impulse noise, the intensity values of 
corrupted pixels are replaced with either the extreme value 
or random numbers in the dynamic range of images, while 
the remainders are left unchanged. There are mainly two 
types of methods for the restoration of images corrupted by 
impulse noise. The first type is median filter that is widely 
used for its denoising ability and computational efficiency 
[5, 8, 9]. In order to better preserve the edge structures of 
images, the other type of variational approaches have been 
developed for impulse noise removal [18, 3, 10, 11]. In [18], 
a data-fidelity term of 1l  norm was first introduced to 
achieve a significant improvement for impulse noise 
removal. In order to resolve this problem, many effective 
two-phase methods are proposed [3, 7, 19] by associating 
various variational models with different median filters. The 
first phase of their methods is to detect the location of noisy 
pixels corrupted by impulse noise using median filters, and 
then employ some variational methods to estimate the gray 
values for the noisy pixels in the second phase. 

As a matter of fact, we often encounter the case where 
an image is corrupted by both Gaussian and impulse noise in 
practice. Such mixed noise could occur when an image that 
has already been contaminated by Gaussian noise in the 
procedure of image acquisition with faulty equipment 
suffers impulsive corruption during its transmission over 
noisy channels successively.  

However, not much work has been designed to 
effectively eliminate mixed noise due to the distinct 
characteristics of both types of degradation processes. 
Concretely, the methods developed for Gaussian noise 
cannot effectively suppress impulse noise because they 
interpret the noisy pixels as edges to be preserved, whereas 
the approaches for impulse noise removal will retain most 
Gaussian noise in the restored images leading to grainy, 
visually disappointing results [18]. 
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The mainstream algorithms are developed to combine 
variational models with different median filters based on the 
idea of above two-phase scheme. More precisely, by 
extending [18] to restrict the data fidelity term within the 
outlier domain, Cai et al. proposed a modified two-phase 
method to deblur images corrupted by impulse noise plus 
Gaussian noise [7]. In [10], a total variation prior based 
model was also designed for impulse and Gaussian noise 
removal. Lately, Li et al. further proposed to handle blurred 
images corrupted by mixed Gaussian-impulse noise by 
minimizing a new functional including a content-dependent 
fidelity term and a novel regularizer defined as the 1l  norm 
of geometric tight framelet coefficients [11].  

Although the regularization terms above have the edge-
preserving property, they only consider image local 
information and tend to generate over-smoothed results. 
Hence, the more accurate and effective image prior is 
desirable. Moreover, the characteristic of self-similarity in 
natural images is not utilized. 

In this paper, a new variational algorithm for mixed 
Gaussian-impulse noise removal is proposed within 
regularization framework. Our main contributions are two-
fold. First, a generalized variational scheme for mixed 
Gaussian-impulse noise removal is formulated via 
exploiting image local consistency and nonlocal consistency 
simultaneously. Second, a Split-Bregman based iterative 
numerical algorithm is developed to solve the above 
optimization problem efficiently. 

The rest of this paper is organized as follows. In Section 
2, a generic problem formulation for mixed Gaussian-
impulse noise removal within regularization framework is 
given. We introduce the image local and nonlocal 
consistency in Section 3. The details of our proposed 
algorithm are presented in Section 4. Experiments are 
reported in Section 5 and we conclude this paper in Section 
6. 
 

2. PROBLEM FORMULATION 
 

As a fundamental problem in the field of image 
processing, image restoration aims to reconstruct the 
original high-quality image from its degraded observed 
version. In this paper, we restrict our attention to the task of 
removing a mixed noise composed of Gaussian noise plus 
impulse noise. It is a typical ill-posed problem, which can be 
generally modeled as the following two steps: 

imp

y x n

y y
 ,                                (1) 

where NRx,y,n are lexicographically stacked 
representations, denoting the original image, the degraded 
image and the additive Gaussian white noise with standard 
variance , respectively. 

imp  
represents the corruption by 

impulse noise with a corruption rate [0,1]r .  
This Gaussian noise process will typically result from 

the physical limitations of the image acquisition procedure: 

thermal noise, photon counting noise and film grain noise 
[9], as explained before. 

There are two common types of impulse noise used in a 
wide variety of applications: salt-and-pepper and random-
valued impulse noise [3]. Denote by [ ]ix  the intensity value 
of the i-th pixel in image x  and by min max[ , ]d d  the dynamic 
range of an image. Then the two models of impulse noise 
are defined by   
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where r  determines the level of the salt-and-pepper noise. 
b. Random-valued impulse noise:  
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where id  are identically and uniformly distributed random 
numbers in min max[ , ]d d  and r  determines the level of the 
random-valued impulse noise. 

Let N  be the set of locations of the outlier candidate 
pixels corrupted by impulse noise and B = A / N  be the 
set of locations of the left pixels without impulse noise. 
Denote , ,B B By x n  as the vectors of elements of , ,y x n , 
respectively, whose locations belong to B  and denote Ny  
as the vector of elements of y , whose locations belong to 
N , that is, /N By y y .  

Assume the cardinality of B  is M and denote B  as an 
M N  matrix of indicators 0,1  showing which elements 
of y  belong to B , so that 

B

B

B

B

B

B

y y

x x

n n

.                           (2)

 

Because the impulse corrupted pixels located in N  do not 
carry any information about the original image or the 
previous Gaussian noise, the problem of removing mixed 
Gaussian-impulse noise can be converted to the problem of 
inferring the complete noiseless data x  from its partial 
Gaussian noisy data By . To determine B , like [10, 11], we 
use adaptive median filter (AMF) [8] for salt-and-pepper 
noise detection and adaptive center-weighted median filter 
(ACWMF) [9] for random-valued impulse noise detection 
since they are simple and effective. Thus, when given B , 
the generic variational model for mixed Gaussian-impulse 
noise removal can be formulated as follows:   

2

2
ˆ B

x
B x y xx argmin ,             (3) 

where the parameter  plays the role of balancing the data 
fidelity term and the regularization term. 
 
3. IMAGE LOCAL AND NONLOCAL CONSISTENCY 
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In this section, we give the definitions of image local and 
nonlocal consistency, which will be incorporated into the 
variational framework as regularizations for mixed noise 
removal. 
 
3.1. Image Local Consistency   
 
From the view of statistics, the image is preferred when its 
responses for a set of filters are as small as possible. In most 
of the best-performing methods, the marginal statistics are 
assumed to be Laplacian. However, studies of real-world 
images have indicated that the marginal distributions have 
significantly heavier tails than Laplacian, being well 
modeled by a hyper-Laplacian form. Hyper-Laplacian 
image priors have been exploited in a wide range of settings 
[22-24]: image deblurring, super-resolution, transparency 
separation, which have achieved better quality results. 

In this paper, we measure the image local consistency 
by hyper-Laplacian priors, defined by 

                   
2 3( )LC x x ,                           (4) 

where  represents the spatial gradients of the image in 
both vertical and horizontal directions. The image local 
consistency essentially enforces smoothness between 
neighboring pixels of natural images in a statistical manner. 
 
3.2. Image Nonlocal Consistency 
 
Inspired by the success of sparse representation [13] and 
self-similarity [12] in image restoration [14], we integrate 
them and introduce a type of nonlocal three-dimensional 
sparsity as a measurement of image nonlocal consistency, 
which can be formulated in the following four steps: 

Firstly, divide the image x  with size N  into n  
overlapped blocks of size sB

 and each block is denoted by 
kx , i.e., 1, 2, ...,k n . Secondly, define 

kx
S

 
the set 

including the c  best matched blocks to kx  in the L L×  
training window, that is, 1 2{ , ,..., }

k k k k cx x x xS S S S . 
Thirdly, for every 

kx
S , a group is formed by stacking the 

blocks belonging to 
kx

S  into a three-dimensional array, 
which is denoted by 

kx
Z . Finally, denote 3DT  the operator 

of a three-dimensional transform, and ( )
k

3D

xZT
 
the 

transform coefficients for 
kx

Z . Let xΘ  be the column 
vector with size sK B c n= ⋅ ⋅

 built from all the ( )
k

3D

xZT
 arranged in lexicographic order. Therefore, the image 

nonlocal consistency can be measured by the nonlocal three-
dimensional sparsity of  xΘ ,  written as 

0 0
1

( )( )
kNC

n

k

3D

xx T Zx
=

= Θ = ,            (5)
 

where  
0

 is 0l  norm, counting the nonzero entries of a 
vector.  

Similarly, the inverse operator NC
Ω  corresponding to 

NC  can be defined in the reverse procedures. Thus, given 
xΘ , the new estimate of x  is expressed as ˆ ( )

NC xx Ω Θ= . 

4. AN ITERATIVE ALGORITHM FOR MIXED 
GAUSSIAN-IMPULSE NOISE REMOVAL 

 
By incorporating image local consistency (4) and nonlocal 
consistency (5) into the generic variational model (3), a new 
formulation for mixed Gaussian-impulse noise removal can 
be expressed as follows:   

2

2
ˆ arg min LC NCB

x
Bx x y x x ,  (6) 

where λ  and β  are control parameters. 
Problem (6) is essentially non-convex and quite 

difficult to solve directly due to the non-differentiability and 
non-linearity of the two consistency terms. Solving it 
efficiently is one of the main contributions of this paper. 

By utilizing variable splitting technique [21], the 
problem will change into an equivalent constrained 
optimization:  

2

2
ˆ ˆ ˆ, ,

                        . .    ,

LC

NC s t

B
x,u,w

Bx u w x y u

w x u x w

argmin
,  (7) 

Applying Bregman algorithm [16, 17] to (7) leads to the 
following iterative steps: 

0

2 2 3( 1) ( 1) ( 1)
2

2 2( ) ( )
1 22 2

ˆ ˆ ˆ, ,

         

argmin

Θw

x,u,w
Bx u w x y u

x u b x w c

j j j

j j

B

 

, (8) 

( 1) ( ) ( 1) ( 1)

( 1) ( ) ( 1) ( 1)

ˆ ˆ ;
ˆ ˆ .

b b x u

c c x w

j j j j

j j j j

=
                (9)

 

Instead of solving (8) directly, here, an alternating 
direction technique is employed, which alternatively 
minimizes one variable while fixing the other variables, to 
split Problem (8) into the following three sub-problems. In 
what follows, we argue that every separated sub-problem 
admits a closed form solution. For simplicity, the subscript   
j is omitted without confusion. 
 
4.1. x  sub-problem   
 
Given u  and w , x  sub-problem becomes 

2 2 2
1 22 2 2

+ +Bx
B x y x u b x w cmin . (10) 

Since (10) is a minimization problem of strictly convex 
quadratic function, there is a closed form, expressed as  

               ( ) 1
+ˆ T
IB Bx sμ

−
= ⋅ .                          (11) 

Here, 1 2( + ) ( + ),TB by u c ws μ μ= + + I  is identity matrix 
and 1 2= +μ μ μ . Owing to the particular structure of 
Matrix B  that satisfies TB B I= , applying the Sherman-
Morrison-Woodbury matrix inversion formula to (11) yields  

1 1
1ˆ ( )TI B Bx sμ μ+= − ⋅ .                  (12) 
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4.2. u  sub-problem 
 
With the recovered x andw , u  sub-problem is  

2 2 3
1 2u
u x b umin  .          (13) 

According to [22], the solution to (13) can be obtained 
analytically by just solving a quadratic function. 
 
4.3. w  sub-problem   
 
Given x  and u ,  we get w  sub-problem 

0

2

2 0

2

2 2

122 2
1 ( )

   

k

n

k

3D

w

w

w

w
T Z

x w c

w r

min

min

Θ
,       (14)

 

where ( - )r x c . Here, we model the elements of w r  
as random variables from a Gaussian process with zero 
mean and variance 2 , which is reasonable and commonly  
used in practice. Under this assumption, since

, , ,N K
w rw r Θ ΘR R , and the transform 3DT  is 

orthogonal for every group, there exist the following two 
equations with very large probability (limited to 1): 

           
2

2

2Nw r ,                         (15) 

2

2

2 2
2

1

( ) ( ) (16)
k k

k

n
K K3D 3D

w r w rT Z T ZΘ Θ
 

Incorporating (15) and (16) into (14) leads to 

0

2

2
1
2 N

K
w r ww

Θ Θ Θmin .           (17) 

Owing to [21] the closed form of (17) is written as 
, 2w r=Θ Θhard( ) , where K N ,  stands for the 

element-wise product of two vectors and ( , )ahard  is hard 
thresholding function with threshold a . Thus, the solution 
for the w  sub-problem (14) is 

( )ˆ , 2NC NCw rw = Ω Θ = Ω Θhard( ) .           (18) 

Table 1. The Proposed Algorithm for Mixed Gaussian-Impulse 
Noise Removal via Image Local and Nonlocal Consistency  

Input: Degraded image y  corrupted by Gaussian plus impulse 
noise and the standard variance of Gaussian noise n . 
Initialization:  

( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ), ,ˆ ˆ ˆ 0 Mx u w y b c ;  
Outer Loop: Iterate on i = 0, 1, 2, 3 

Apply AMF (for salt and pepper noise) or ACWMF (for random-
valued noise) with the threshold 1( )iδ +

 to the image ( )ˆ ix  to get 
the noisy candidate set ( 1)i

M ; 
Let ( ) ( 1)i i

N = M M and build sub-sampling matrix B ; 
Inner Loop: Iterate on  j = 0, 1, 2,…, t 

Solve  x   sub-problem to achieve x̂  by computing Eq. (11); 
Solve  u  sub-problem to achieve û  by computing Eq. (13); 
Solve  w sub-problem to achieve ŵ  by computing Eq. (18); 
Update b  and c  by computing Eq. (9); 

Output: Final restored image x̂ . 

4.4. Summary of the Proposed Algorithm 
 
To further improve the quality of denoising results, the 
progressive mechanism for identifying the noisy candidate 
set is introduced [19]. Hence, the proposed algorithm for 
mixed Gaussian-impulse noise removal via image local and 
nonlocal consistency is summarized in Table 1. 
 

5. EXPERIMENTAL RESULTS 
 
In this section, extensive experimental results are provided 
to evaluate the performance of the proposed algorithm. In 
the simulations, images will be corrupted by Gaussian noise 
with standard deviation  and impulse noise density level r. 
Note that the density level can be detected automatically by 
the median filters [8, 9], thus the only parameter required 
known is standard deviation  of Gaussian noise. Two state-
of-the-art algorithms compared with our proposed method 
are: TV [10], IFASDA [11]. 

Extensive experiments are carried out on four 
benchmark images, where the standard variance  of 
Gaussian noise equals 10 and the impulse noise level r 
varies from 30% to 50% for salt-and-pepper noise and from 
10% to 30% for random-valued noise.  

Table 2 and Table 3 present the PSNR results of the 
three comparative denoising algorithms on all test images 
for Gaussian plus salt-and-pepper impulse noise and 
Gaussian plus random-valued impulse noise, respectively. 
Obviously, the proposed method considerably outperforms 
the other methods in all the cases, with a PSNR 
improvement of about 2 dB on average over the second best 
algorithm (i.e. IFASDA [11]). In particular, for Image 
Barbara, which is rich in textures, in the case of Gaussian 
plus salt-and-pepper impulse noise with = 10 and r = 50%, 
the PSNR gain achieved by the proposed method over 
IFASDA is as high as 3.6 dB. 

Some visual results of the recovered images for the 
three algorithms are presented in Figures 1~4. Please 
enlarge and view the figures on the screen for better 
comparison. One can see that TV [10] is effective in 
suppressing the noises; however, it produces over-smoothed 
results and eliminates much image details (see Fig. 1(b), Fig. 
2(b), Fig. 3(b) and Fig. 4(b)). IFASDA is very competitive 
in recovering the image structures. However, it tends to 
generate some annoying artifacts in the smooth regions (see 
Fig.1(c), Fig. 2(c), Fig. 3(c) and Fig. 4(c)). By comparing 
with TV and IFASDA, the proposed method not only 
successfully suppresses the mixed Gaussian-impulse noise 
but also reconstructs quite accurate textures and preserves 
more and sharper image details, exhibiting the best visual 
quality consistently (see Fig. 1(d), Fig. 2(d), Fig. 3(d) and 
Fig. 4(d)). The high performance of the proposed algorithm 
is attributed to the employment of image local and nonlocal 
consistency at the same time, which offers a powerful 
mechanism of characterizing the statistical properties of 
natural images. 
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Table 2. PSNR of Various Methods for Gaussian plus Salt-and-Pepper Noise Removal (dB) 
Image Lena Boat House Barbara 

Avg. 
r (%) 30 40 50 30 40 50 30 40 50 30 40 50 
Noisy 10.63 9.40 8.44 10.66 9.42 8.46 10.69 9.46 8.50 10.58 9.36 8.39 9.50 
TV  31.33 30.85 30.20 29.20 28.53 27.66 31.63 31.10 30.36 26.86 26.18 25.40 29.11 

IFASDA  32.69 32.27 31.70 30.82 30.28 29.50 32.68 32.26 31.69 29.47 28.59 27.45 30.78 
Proposed 34.02 33.59 33.00 31.54 30.95 30.17 34.86 34.43 33.82 32.33 31.95 31.12 32.65 

Table 3. PSNR of Various Methods for Gaussian plus Random-Valued Impulse Noise Removal (dB) 
Image Lena Boat House Barbara 

Avg. 
r (%) 10 20 30 10 20 30 10 20 30 10 20 30 
Noisy 18.78 16.05 14.36 18.88 16.13 14.42 18.87 16.08 14.42 18.65 15.93 14.24 16.40 
TV 31.52 30.94 30.16 28.83 28.10 27.39 31.54 30.89 29.84 25.47 24.88 24.18 28.65 

IFASDA 32.17 31.47 30.43 29.29 28.46 27.64 31.88 31.13 29.87 25.69 25.06 24.30 28.95 
Proposed 33.63 32.72 31.76 31.04 29.64 28.80 34.14 33.30 32.20 30.80 29.20 27.62 31.24 

    
(a) Noisy (8.39 dB)                              (b) TV (25.40 dB)                     (c) IFASDA (27.45 dB)                      (d) Proposed (31.12 dB) 

Fig. 1. Denoised results of various methods on Image Barbara corrupted by Gaussian plus salt-and-pepper impulse noise with = 10 and r = 50%. 
 

    
(a) Noisy (8.44 dB)                              (b) TV (30.20 dB)                        (c) IFASDA (31.70 dB)                     (d) Proposed (33.00 dB) 

Fig. 2. Denoised results of various methods on Image Lena corrupted by Gaussian plus salt-and-pepper impulse noise with  = 10 and r = 50%. 

    
(a) Noisy (10.66 dB)                             (b) TV (29.20 dB)                         (c) IFASDA (30.82 dB)                    (d) Proposed (31.54 dB) 

Fig. 3. Denoised results of various methods on Image Boat corrupted by Gaussian plus salt-and-pepper impulse noise with  = 10 and r = 30%. 
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                     (a) Noisy (14.42 dB)               (b) TV (29.84dB) 

 
                  (c) IFASDA (29.87 dB)         (d) Proposed (32.20 dB) 
Fig. 4. Denoised results of various methods on Image House corrupted by 
Gaussian plus random-valued impulse noise with  = 10 and r = 30%.  

 
6. CONCLUSIONS 

 
In this paper, a novel algorithm for mixed Gaussian-impulse 
noise removal is proposed by exploiting image local 
consistency and nonlocal consistency simultaneously, which 
can efficiently characterize the statistical properties of 
natural images. Extensive experiments demonstrate that the 
proposed algorithm is able to achieve significant 
performance improvements over the current state-of-the-art 
schemes, generating denoising results with better quality. 
Current and future work includes the extensions on a variety 
of applications, such as deblurring images corrupted by 
mixed Gaussian-impulse noise. 
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