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ABSTRACT 

 

To overcome the unsatisfactory encoding quality of 

conventional image compression methods at low bit rates, 

the idea of downsampling prior to encoding and upsampling 

after decoding turns out to be a good solution. Based on this 

paradigm, we propose a low-bit-rate image compression 

algorithm by use of the novel wavelet inpainting technique 

via collaborative sparsity. Superior to the existing methods 

which operate the sampling in the space domain, we merge 

the wavelet transform in the downsampling stage, which is 

verified to be able to preserve much more information. By 

investigating the local two-dimensional sparsity and the 

nonlocal three-dimensional sparsity of the image 

simultaneously, a collaborative sparsity model is exploited 

to restore the full-resolution image from the decoded 

downsampled image. Finally a Split Bregman based 

iterative algorithm is developed to solve the optimization 

problem. Experimental results demonstrate obvious visual 

quality improvements, as well as PSNR gains, compared to 

the state-of-the-art methods under various low bit rates.  

 

Index Terms— Image compression, low bit rates, 

wavelet inpainting, sparsity 

 

1. INTRODUCTION 

 

Conventional image compression methods [1], e.g. JPEG 

and JPEG 2000, seek to encode every single pixel in the 

original image. This may well preserve the original 

information when bandwidth permits. In the case of low bit 

rate transmission such as the mobile network, however, 

severe blockiness and other coding artifacts would arise as a 

result [2, 3]. Each pixel could be merely allocated limited 

number of bits on average, and the large quantization step 

size adopted would greatly suppress the information left in 

the reconstructed picture. Consequently, severe deterioration 

of image compression quality would occur.  

Knowing that images tend to be generated by 

oversampling [4], a lot of redundancy exists and thus some 

representations of the pixels could be removed. According 

to research discoveries, downsampling prior to encoding and 

upsampling after decoding can improve the quality of coded 

image at low bit rates [5-7]. For this reason, some works are 

focusing on the downsampling and upsampling stage to 

derive a better encoding performance. 

W. Lin et al [8] proposes an adaptive downsampling 

method, which determines the downsampling ratio/direction 

and quantization step for each macroblock based upon the 

local visual significance of the signal. It outperforms the 

JPEG coding method to some extent but pales in 

comparison to the more advanced JPEG 2000 method. 

Besides, its modification to the coding framework plus the 

macroblock-based feature makes it incompatible with 

traditional coding standards. An improved scheme called the 

collaborative adaptive down-sampling and upconversion 

(CADU) is proposed by X. Wu et al [9]. It filters the image 

in a spatially varying and directional way ahead of the 

uniform downsampling in the image space and encodes it 

using a third party codec. At the decoder, the low-resolution 

image is up-converted to the original resolution in a 

constrained least squares restoration process. This method 

can be applied without change to the current image coding 

standard, and achieves better results than the one in [8]. Yet 

the restored image quality is restrained by the space-domain 

downsampling, which cannot preserve adequate information 

for the image up conversion. 

In this paper, we propose a wavelet inpainting driven 

image compression algorithm (WIDIC) at low bit rates. Our 

contribution is threefold. First, we put forward the image 

compression framework of downsampling and upsampling 

in the wavelet domain, which can be combined with any 

image codec. The low frequency component in wavelet 

domain is believed to retain more information than the 

simply downsampled one in the space domain. Second, we 

formulate the process of restoring the high-resolution image 

from the decoded low-resolution one as a wavelet inpainting 

optimization problem. We adopt a collaborative sparsity 

model as the regularization term, which adaptively enforces 

local two-dimensional smoothness and nonlocal three-

dimensional self-similarity simultaneously in a hybrid 

space-transform domain. Thus it substantially exploits the 

intrinsic features of the natural image and can offer high 

quality results. Third, a Split-Bregman based iterative 

algorithm is developed to efficiently solve the optimization 

problem. This proposal provides a novel idea of integrating 
  

 



 
Fig. 1: Block diagram of the proposed wavelet inpainting driven image compression system. 

 

the prior model of an image into the compression 

framework. Moreover, it is compatible with any third-party 

compression techniques and outperforms the highly 

evaluated JPEG 2000 and the above-mentioned CADU. 

The rest of the paper is organized as follows. Section II 

describes the details of the proposed wavelet inpainting 

driven image compression algorithm. Section III presents 

the experimental results. Lastly, Section IV contains our 

summary and derived conclusions. 

 

2. PROPOSED WIDIC ALGORITHM 

 

2.1. Problem Formulation 

 

As shown in Fig. 1, the image first goes through the wavelet 

transform and then is downsampled into a low-resolution 

image in the transform domain. Encoded by any coding 

technique, the downsampled image is to be transmitted 

through the network and received by the other side. The 

entire compression process can be expressed as 

      ,HWy u n                            (1) 

where u  represents the original high-resolution image and

y is the directly reconstructed low-resolution image from 

the decoder. W  denotes the wavelet transform operator and

H is the downsampling operator, the two of which jointly 

down-sample the original image into a low-resolution one in 

the wavelet transform domain. n is the noise induced 

during the encoding and transmission periods, which is 

assumed to be the additive Gaussian white noise. 

After decoding, the reconstructed low-resolution image

y can be displayed on devices with small screens such as 

the mobile phone. For regular-sized screens like the 

computer, it is expected to be up-sampled to a high-

resolution image in the wavelet domain, which may be 

considered as an inverse process of the downsampling. So in 

order to find a restored image û closest to the original image

u , we can formulate it into an optimization problem as 

follows. 

ˆ .
2

2
1
2argminuu HWu y 

                
(2) 

Since Eq. (2) above is an ill-posed problem and no 

specific solution could be found, we need to incorporate a 

regularization term and hereby get 

ˆ ,
2

2
1
2argmin ( )u HWu yu u              (3) 

where ( )u stands for the regularization term, which 

describes the prior knowledge of the image.  is a 

regularization parameter that controls the tradeoff between 

the two terms. 

Recently, many works concentrating on utilization of 

both local smoothness and nonlocal self-similarity have 

achieved great success in image restoration applications [10, 

11, 15]. Therefore, to find a suitable regularization term to 

well exhibit the intrinsic characteristics of the image, this 

paper adopts the collaborative sparsity model, which is first 

proposed in [10] for image compressive sensing recovery 

and written as  

( ) ( )   ( ).N3DL2D
    u u uλτ

           (4) 

In this model, two sparse features of the image are 

investigated, the local smoothness and the nonlocal self-

similarity, which are denoted by ( )L2D u  and ( )N3D u  

respectively. τ  and λ  are their corresponding parameters 

and collaboratively weigh the contributions of the two terms.  

Specifically, the local smoothness is formulated as two-

dimensional sparsity in the space domain, which can be 

described by the follow equation. 

1 11v h
,( )L2D   u u u uD D D            (5) 

where  
v h
;D D D  and  are vertical and horizontal finite 

gradient operators. Given the observation that image 

gradient values are close to zero and roughly conform to the 

Laplacian Distribution, we suppress the 1 -norm of the 

gradients to ensure the image local smoothness. 

The nonlocal self-similarity is exploited as three-

dimensional sparsity in the transform domain. We first stack 

similar image patches in a three dimensional way, and then 

transform the group of patches into a domain where the 

coefficients demonstrate salient sparsity. This feature could 

be characterized by  
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where 
3DT the operator of a three-dimensional transform 

and uZ
k

is a three-dimensional array containing similar 

patches corresponding to the image patchuk . 

Readers may refer to [10] for more details about the 

formulation of the collaborative sparsity model. Moreover, 

it is worth emphasizing that any image prior model can be 

incorporated into our proposed WIDIC algorithm. For this 

reason, it establishes an interesting and direct connection 

between natural image priors and image compression. 

So far, Eq. (3) could be rewritten as 

.
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(7) 

To solve the optimization problem defined in Eq. (7), a 

Split Bregman based iterative scheme is devised and will be 

elaborated in Subsection 2.2.  

 

2.2. Split Bregman based Iterative Algorithm 

 

First, for convenient representation we introduce the 

proximal map ( )( )tprox g x defined by [14]. 

2

2
1
2( )( ) argmin ( ){ }.tprox t gg

u
x u x u         (8) 

In Eq. (8), g  refers to a proper closed convex function and t 

is a positive scalar. 

Note that Eq. (7) is essentially not a convex problem 

and quite difficult to solve directly. Applying Split Bregman 

algorithm [12] to Eq. (7) leads to the following iterative 

steps: 
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Further, an alternating direction technique is employed 

for the split problem in (9), which alternatively minimizes 

one variable while keeping the other variables. Thus, the 

following three sub-problems are yielded. Similar to [10], 

we argue that every separated sub-problem has an efficient 

solution. For simplicity, the subscript j is omitted without 

confusion. 

 

2.2.1.u  Sub-problem 

Given andw  x , the optimization problem associated with 
u    can be expressed as  

ˆ .12 2 2

2 2 2
1
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u
HWu u y u w b u x c2 

      

           (11) 

Since (11) is a minimization problem of strictly convex 

quadratic function, there is a closed form expressed as  
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                           (12) 

where B= HW ,
1 2( + ) ( + ),B by w c xq    T I is 

identity matrix and 
1 2

    . To avoid the operation of 

matrix inversion, owing to the particular structure of Matrix 

B that satisfies
T

B B I , applying the Sherman-Morrison-

Woodbury matrix inversion formula to (12) yields  

ˆ 1 1
1( )T TW H HWI q.u                    (13) 

 

2.2.2. w  Sub-problem 

With the aid of ,u x , the w sub-problem is equivalent to 

ˆ ,( )( )L2Dprox w p
                    

(14) 

where -p u b  and  1   .  

Indeed, the proximal map ( )( )L2Dprox  p  can be 

solved efficiently by fast iterative shrinkage/thresholding 

algorithm (FISTA) [14].  

 

2.2.3. x  Sub-problem 

With the recovered u andw , x  sub-problem is  

ˆ ,( )( )N3Dprox x rα                      (15) 

wherer u c   and 2α λ . 

According to [10], the solution to the proximal map

( )( )N3Dprox  rα  can be obtained analytically by just 

utilizing hard thresholding function. 

In light of all derivations above, the complete 

description of proposed WIDIC via collaborative sparsity 

model is given in Table 1. 

Table 1: The Proposed Wavelet Inpainting Driven Image 

Compression via Collaborative Sparsity  

Input: the received low-resolution image y  and the sub-sampling 

matrix H . 

Initialization:  
( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 )1 1

1 2
, , , , ,ˆ ˆ ˆ     W Hx u w y b c    0 ;  

Loop: Iterate on k = 0, 1, 2, … 

Solve  u  sub-problem to achieve û ; 

Solve w  sub-problem to achieve ŵ ; 

Solve  x   sub-problem to achieve x̂ ; 

Update b and c ; 

Until maximum iteration number is reached 

Output: Final restored image û . 

 

3. EXPERIMENTAL RESULTS 

 

To evaluate the proposed WIDIC method, we carry out the 

experiments on four groups of standard gray-level images: 

“Butterfly”, “Lena”, “Leaves” and “Boat”. Compressing 

these test images under various bit rates, we compare the 

restoration performance of our method with that of JPEG 

2000 (J2K for short) and CADU [9]. Both subjective quality 

and objective quality results will be demonstrated. 



Table 2：PSNR Comparisons among Different Methods at Various Bit Rates 

 

 
Fig. 2: Comparison of different methods at 0.25 bpp. Left: 

J2K(PSNR=23.18 dB, SSIM=0.7699); Middle: CADU (PSNR=23.24 dB, 

SSIM=0.7748); Right: WIDIC (PSNR=23.88 dB, SSIM=0.8130).  

 
Fig. 3: Comparison of different methods at 0.25 bpp. Left: J2K 

(PSNR=29.82 dB, SSIM=0.8297); Middle: CADU (PSNR=29.83 dB, 

SSIM=0.8250); Right: WIDIC (PSNR=30.17 dB, SSIM=0.8340).  

 
Fig. 4: Comparison of different methods at 0.35 bpp. Left: J2K 

(PSNR=24.29 dB, SSIM=0.8298); Middle: CADU (PSNR=24.62 dB, 

SSIM=0.8394); Right: WIDIC (PSNR=25.72 dB, SSIM=0.8878).  

 
Fig. 5: Comparison of different methods at 0.35 bpp. Note the superior 

visual quality of the WIDIC method even though it has a lower PSNR. Left: 

J2K (PSNR=28.80 dB, SSIM=0.7906); Middle: CADU (PSNR=27.62 dB, 

SSIM=0.7847); Right: WIDIC (PSNR=28.37 dB, SSIM=0.7961).  

The PSNR comparisons among the three methods are 

shown in Table 2. At each bit rate, the best PSNR results are 

marked in bold for each image. We can see that our WIDIC 

always beat JPEG 2000 and CADU for almost all the cases 

under extremely low bit rates from 0.10 bpp to 0.30 bpp. 

Even when the bit rate reaches as high as 0.3 bpp to 0.40 

bpp, it can still demonstrate obvious advantages over the 

other methods, and remain the best for most of the test 

groups. It can provide PSNR gains up to 1.44 dB compared 

to JPEG 2000, and up to 1.42 dB compared to WIDIC. In 

contrast, CADU can only achieve slight PSNR increases 

than JPEG 2000. 

Figs. 2~5 give the visual quality comparisons of the 

restored images with the three methods. Fig. 2 and Fig. 3 are 

the restoration results of the images “Butterfly” and “Lena” 

under the bit rate 0.25 bpp, respectively. It is easy to notice 

that compared to JPEG 2000 and CADU, which both lead to 

annoying artifacts, our WIDIC can produce clear images 

which are much more pleasant to human eyes. Fig. 4 and 

Fig. 5 are restoration results of the images “Leaves” and 

“Boat” under the bit rate 0.35 bpp, respectively. At the 

higher bit rate, WIDIC yields the purest image of the three, 

which is consistent with the PSNR and SSIM [13] results in 

Fig. 4. In Fig. 5, although WIDIC cannot achieve a higher 

PSNR value than JPEG 2000, it does generate a better visual 

image without the burr effects surrounding the mast. 
 

4. CONCLUSION 
 

In this paper, we propose a wavelet inpainting driven image 

compression algorithm at low bit rates. Instead of directly 

encoding the original high-quality image, we base our 

scheme on the framework of downsampling prior to 

encoding and upsampling after decoding. We believe that 

downsampling in the wavelet domain can better preserve the 

original information than the space domain through 

sufficient experiments. Hence, we integrate the wavelet 

inpainting technique at the receiver side and devise a joint 

statistic model by exploiting the local and nonlocal sparsity 

of the image. Extensive experiments demonstrate that our 

method can distinctly outperform the well-known coding 

standard JPEG 2000 and the most state-of-the-art method 

CADU, both in subjective image quality and PSNR. 
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Rate 

(bpp) 
Butterfly Lena Leaves Boat 

J2K CADU WIDIC J2K CADU WIDIC J2K CADU WIDIC J2K CADU WIDIC 

0.10 18.91  18.75  19.17  25.38  25.08  25.69  17.85  18.20  18.07  23.54 23.35 23.66 

0.15 20.82  20.84  20.76  27.16  27.16  27.69  19.77  19.75  20.11  25.11 24.95 25.53 

0.20 21.99  22.17  22.43  28.53  28.38  28.87  21.12  21.19  21.70  26.29 25.93 26.54 

0.25 23.18  23.24  23.88  29.82  29.83  30.17  22.62  22.52  23.09  27.10 26.74 27.42 

0.30 24.01  24.11  25.06  30.73  30.75  31.33  23.26  23.48  24.34  27.97 27.18 27.92 

0.35 24.85  25.17  25.97  31.16  31.37  31.74  24.29  24.62  25.72  28.80 27.62 28.37 

0.40 25.44  25.86  26.30  32.23  31.87  32.61  24.95  24.98  26.39  29.71 27.80 28.78 
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