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ABSTRACT 

 

A novel coding strategy for block-based compressive sens-

ing named spatially directional predictive coding (SDPC) is 

proposed, which efficiently utilizes the intrinsic spatial cor-

relation of natural images. At the encoder, for each block of 

compressive sensing (CS) measurements, the optimal pre-

diction is selected from a set of prediction candidates that 

are generated by four designed directional predictive modes. 

Then, the resulting residual is processed by scalar quantiza-

tion (SQ). At the decoder, the same prediction is added onto 

the de-quantized residuals to produce the quantized CS 

measurements, which is exploited for CS reconstruction. 

Experimental results substantiate significant improvements 

achieved by SDPC-plus-SQ in rate distortion performance 

as compared with SQ alone and DPCM-plus-SQ. 

 

Index Terms— Compressive sensing, directional pre-

diction, predictive coding, scalar quantization 

 

1. INTRODUCTION 

 

Recent years have witnessed the rapid development of 

Compressive Sensing (CS), which has drawn quite an 

amount of attention in the society of signal processing [1-

12]. From many fewer acquired measurements than sug-

gested by the Nyquist sampling theory, CS theory demon-

strates that a signal can be reconstructed with high probabil-

ity when it exhibits sparsity in some domain, which has 

greatly changed the way engineers think of data acquisition. 

Most CS literature assumes that the measurement 

process is effectuated within the hardware of the sensing 

device, where lower-dimensional CS measurements are ob-

tained with respect to original high-dimensional data. Ac-

cordingly, CS measurement process can be regarded as con-

ducting data acquisition and data compression simulta-

neously. However, the data compression CS measurement 

process brings is not a real compression in the strict infor-

mation-theoretic sense, but a type of dimensionality reduc-

tion in essence [9]. Real compression is the process that 

produces an ultimate compressed bitstream from the input 

data, which is done by the so called encoder. Therefore, 

some form of quantization is desirable to generate a com-

pressed bitstream from the CS measurements to implement 

the real CS compression, which has been largely omitted by 

most CS literature.  

One straightforward solution is to simply apply scalar 

quantization (SQ) to CS measurements acquired by the 

sensing device. Nonetheless, due to the ignorance of charac-

teristics of CS and signal itself, the simple solution is found 

highly inefficient in rate-distortion performance [8, 9]. As a 

result, much attention in recent literature has been devoted 

to the improvement of rate-distortion performance of quan-

tized CS, mainly depending on the quantization optimiza-

tion process [7], the reconstruction process [5], or both [4], 

which appears very complicated.  

Lately, as opposed to the works mentioned before, 

Mun and Fowler [9] proposed a framework of quantization 

via simple uniform SQ coupled with differential pulse code 

modulation (DPCM) of the CS measurements, which is ap-

plicable to the CS of images effectuated in blocks, i.e., 

block-based CS (BCS) [2, 3, 10, 12]. Particularly, the pre-

vious block is considered as a prediction and subtracted 

from the current block of measurements in the measurement 

domain. Instead of applying quantization directly to each 

block of CS measurements, the resulting residual is then 

scalar-quantized. The simple DPCM-plus-SQ approach to 

quantized CS provides surprisingly competitive rate-

distortion performance. However, it is not efficient enough 

to leverage previous block as the prediction of current one, 

since the non-stationarity of natural images is ignored.  

Inspired by intra prediction in video coding, this paper 

greatly extends the previous work [9] and proposes a novel 

coding strategy for block-based compressive sensing, called 

spatially directional predictive coding (SDPC), which effi-

ciently utilizes the intrinsic spatial correlation of natural 

images. For each block of compressive sensing measure-

ments, its optimal prediction is selected from a set of mul-

tiple prediction candidates that are generated by four de-

signed directional predictive modes. To the best of our 

knowledge, this is the first time that directional predictive 

coding is incorporated into the framework of block com-

pressive sensing. Experimental results verify the effective-

ness of our proposed SDPC. 

This paper is organized as follows. Section 2 briefly 

reviews CS and BCS. The details of proposed SDPC are 

provided Section 3. Experimental results are shown in Sec-

tion 4, and conclusions are drawn in Section 5. 



 
Figure 1: Architecture of SDPC-plus-SQ to block-based compressive sensing (BCS). BCS is implemented with any CS-based image-

acquisition; Q is uniform SQ; Q-1 is inverse uniform SQ; C is entropy coder; P is proposed spatially directional predictive coding module. 

 

2. BACKGROUND 

 

Briefly, if a signal is sparse in frequency domain, or in some 

incoherent domain by extension, CS allows exact recovery 

of the signal from its time or space measurements acquired 

by linear projection, whose number is much smaller than 

that of the original signal. More specifically, suppose that 

we have a signal  Ny  and its measurements  Mx , 

namely,
 

=Φx y . Here, Φ  is an M×N measurement matrix 

such that M is much smaller than N. Our purpose is to re-

cover y  from x  with subrate, being  S = M/N. 

In order to avoid the large storage cost of measurement 

matrix, an alternative paradigm for the CS of 2D images 

was proposed [2], wherein the sampling of an image is dri-

ven by random matrices applied on a block-by-block basis, 

i.e., block-based CS (BCS). That is, an image y  is first di-

vided into n non-overlapped blocks of size B×B with each 

block denoted by 
2

1 2, , ...,,( )i i B ny
 
in vector repre-

sentation along the vertical or horizontal scan order. Then, 

its corresponding measurements 
( )ix  is obtained by  

=Φ( ) ( )i i
Bx y  ,                            (1) 

where 
( )i
 BMx and ΦB  is an MB×B2 measurement matrix 

such that the subrate for the image as a whole remains 

S=MB/B2. It is straightforward to conclude that ΦB  applied 

to an image at block level is equivalent to a whole image 

measurement matrix Φ  with a constrained structure, name-

ly, Φ  can be written as a block diagonal with ΦB  along 

the diagonal [3].  

 

3. THE PROPOSED SPATIALLY DIRECTIONAL 

PREDICTIVE CODING (SDPC) 

 

Since each block of a natural image is not isolated, which 

has intrinsic spatial correlation with its neighboring blocks; 

it is straightforward to expect that each block of CS mea-

surements are also highly related with those of its neighbor-

ing blocks. Further, because different blocks may have dif-

ferent directional correlations due to the non-stationarity of 

natural images, the optimal directional mode for each block 

should be selected from multiple candidates. This is just the 

tenet of our proposed spatially directional predictive coding 

(SDPC) for block-based CS. The details of SDPC are given 

below. 

As shown in Fig. 1, an input image y  is first divided 

into n non-overlapped blocks of size B×B with each block 

denoted by 
2

1 2, , ...,,( )i i B ny
 
in vector form along the 

horizontal scan order. Then, all blocks of CS measurements 

are acquired by Eq. (1). Next, borrowing the idea of intra 

prediction in H.264 for 16×16 macroblock, for ith block of 

measurements, denoted by 
( )ix , we design four directional 

prediction modes from its neighboring already reconstructed 

measurements, namely, vertical, horizontal, DC, and di-

agonal, as illustrated in Fig. 2. It is important to stress that 

the main difference between intra prediction in video coding 

and our directional prediction for CS lies that the former is 

at the level of pixel, in space domain while the latter is at 

the level of block in CS measurement domain. More spe-

cially, let 
( )i
Ax , 

( )i
Bx , and 

( )i
Cx  denote the up-left, up, and 

left blocks of measurements with regard to 
( )ix , respective-

ly. As illustrated in Fig. 2, the corresponding predictions by 

four modes above are defined:  

Vertical Mode: 

ˆ ( ) ( )i i
V Bx =x  ,                                     (2) 

Horizontal Mode: 

ˆ ( ) ( )i i
H Cx =x  ,                                     (3) 

DC Mode: 

  
           ˆ ( ) ( ) ( ) 1( )i i i  

DC B Cx = x x  ,              (4) 

Diagonal Mode: 

ˆ ( ) ( )i i
Diag Ax =x  ,                                  (5) 

where the symbol   denotes the right shift operator. It is 

worth noting that, in [9] each block is also extracted in a 

vertical scan order. Thus, it is obvious to witness that 

DPCM [9], which exploits previous block as prediction, is 

equivalent to proposed vertical mode, just a special case of 

our proposed SDPC. Accordingly, it is believed that SDPC 

can gain higher performance than DPCM. 



 
Figure 2:  Illustrations of proposed four directional predictive modes and four corresponding predictive results with respect to current 

block of measurements ( )ix  from its neighboring already reconstructed measurements. 

 

Now we define the set  , ˆ ˆ ˆ ˆ, , ,
( ) ( ) ( ) ( ){ }i i i i

V H DC Diag
  x x x x , 

which is a collection of four directional prediction results 

above. The optimal prediction, denoted by ˆ ( )i
Px , for the 

measurements of the current block is then determined by 

minimizing the residual between ( )ix  and the measurement 

of four predictive results in  , i.e., 

1
ˆ || ||( ) ( )argmin -i i

P  xx x x  .                (6) 

Here, 
1

|| ||  is 1  norm, adding all the absolute values of 

the entries in a vector.  

After obtaining the optimal prediction of ( )ix  , the re-

sidual can be calculated by ˆ( ) ( ) ( )-i i i
Pd x x , which is then 

scalar-quantized to acquire the quantization index 
( ) ( )Q[ ]i i ds . The operation of de-quantization of 

( )is  is 

then conducted to get the quantized residual 
( )id , which is 

then added by ˆ ( )i
Px , producing the reconstructed CS mea-

surements of ( )ix , denoted by ( )ix , ready for further pre-

diction coding. 

What is needed to be written into bitstream is com-

posed of two parts: the flag of best predictive mode (2 bit) 

and the bits to encode 
( )is  by entropy coder. Note that 2 bit 

overhead for each block is almost neglectable as compared 

with the exciting gains it brings (for instance, if block size is 

set to be 16×16, then the overhead is only 2/256 = 0.0078 

bpp). This process is applied for all blocks of CS measure-

ments to achieve the final bitstream.  

In the decoder side, similar to the procedures before, 

all block of reconstructed measurements are obtained from 

the bitstream, which are then utilized for ultimate image 

reconstruction by image CS recovery algorithms. 

To demonstrate the superiority of SDPC over DPCM, 

we make a further quantitative comparison. Like [9], we 

also use the correlation coefficient to measure the correla-

tion of two blocks to measurements 
( )ix , ( )jx , defined as 

|| |||| ||
( )( ) ( )

( ) ( )

( ) ( )
i j

i j

i j

T

 
x x

x x
,x x .                      (7) 

For each block, we calculate its two types of correla-

tion coefficients, i.e., 
1

( )i
CC and 

2

( )i
CC , which are defined as 

1
( )

( ) ( ) ( )i i i-1
CC  ,x x  and 

2
( )

( ) ( ) ( )i i i
P

CC  ,x x , where  
( )i-1x  is the measurements of previous block of 

( )i-1x  and 
( )i
P
x  is its optimal prediction selected by our SDPC from 

four candidates.  

Table I provides the corresponding two types of aver-

age correlation coefficients (ACC), which are computed 

from the above  
1

( )i
CC and 

2

( )i
CC  over all blocks for three 

test images wherein 16×16 blocks are extracted from images 

and subject to random projection with a subrate of 0.5.  

There is no doubt that ACC2 is larger than ACC1 for all im-

ages, which indicates that the prediction by SDPC is more 

efficient than that by DPCM. Additionally, the percentage 

of each predictive mode in SDPC to compute ACC2 is pre-

sented in Table II, which clearly illustrates the contributions 

of each predictive mode. 

Table I: Average Correlation Coefficient in Measurement-Domain 

Image Clown Peppers Lenna Avg. 

ACC1
 0.8630 0.9509 0.9713 0.9284 

ACC2 0.9043 0.9679 0.9777 0.9500 

Table II: Percentage of Each Predictive Mode in SDPC to 

Compute ACC2 

Mode Clown Peppers Lenna Avg. 

0 39.75% 39.55% 50.00% 43.10% 

1 21.88% 27.18% 12.79% 20.62% 

2 28.32% 30.08% 27.34% 28.58% 

3 9.96% 8.50% 9.77% 4.41% 

 

4. EXPERIMENTAL RESULTS 

 

Experimental results are provided to verify the performance 

of the proposed technique SDPC for block-based CS com-

pressive sensing of natural images. The rate-distortion effi-

ciency of SDPC-plus-SQ is examined by comparing it to 

DPCM-plus-SQ and SQ applied alone to BCS measure-

ments. Two image CS recovery algorithms, namely, SPL [3] 

and CoS [6], are exploited to effectuate CS recovery from 

the decoded measurements generated by the above three 

comparative techniques. The implementations of SPL1, 

DPCM1, CoS2 as well as SDPC3 can be found at the corres-

ponding websites. 

                                                 
1 http://www.ece.msstate.edu/~fowler/BCSSPL/. 
2 http://idm.pku.edu.cn/staff/zhangjian/RCoS/. 
3 http://idm.pku.edu.cn/staff/zhangjian/SDPC/. 



Table III: PSNR (in dB) Performance Comparison for Various Bitrates 

Image Clown Peppers Lenna 
Avg. 

Bitrate (bpp) 0.3 0.4 0.5 0.3 0.4 0.5 0.3 0.4 0.5 

SQ+SPL 25.8 26.5 27.2 27.2 28.0 28.6 27.1 27.8 28.4 27.4 

DPCM-plus-SQ+SPL 26.5 27.6 28.2 28.1 29.2 30.0 28.6 29.4 30.0 28.6 

SDPC-plus-SQ+SPL 27.4 28.2 29.0 29.0 29.9 30.6 29.0 29.8 30.4 29.3 

Gain +0.9 +0.6 +0.8 +0.9 +0.7 +0.6 +0.4 +0.4 +0.4 +0.6 

SQ+CoS 27.5 28.6 29.6 28.7 29.3 30.1 27.9 28.6 29.4 28.9 

DPCM-plus-SQ+CoS 27.9 29.5 30.8 29.4 30.8 31.6 

 
1.6 

29.6 30.6 31.3 30.2 

SDPC-plus-SQ+CoS 29.1 30.6 31.8 30.4 31.4 32.1 30.0 30.9 31.6 30.9 

Gain +1.2 +1.1 +1.0 +1.0 +0.6 +0.5 +0.4 +0.3 +0.3 +0.7 
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Figure 3: Rate-distortion performance for various images from 0.1 

bpp to 1.0 bpp. 

In our implementations, the three grayscale test images 

are of size 512×512, the block size for BCS is set to be 

16×16 and the measurement matrix ΦB  is an orthogonal 

random Gaussian matrix. The rate-distortion performance in 

terms of peak signal-to-noise ratio (PSNR) in dB and bitrate 

in bits per pixel (bpp) is provided. Following [9], the actual 

bitrate is estimated using the entropy of the quantizer indic-

es, which would be actually produced by a real entropy cod-

er. The setup of the combination of quantizer step-size and 

subrate is the same as that in [9]. 

Table III gives the PSNR results at various bitrates (from 

0.3 bpp to 0.5 bpp) for the two BCS recovery algorithms, 

i.e., SPL and CoS, coupled with three coding techniques, 

namely, SQ alone, DPCM-plus-SQ and SDPC-plus-SQ. 

Note that the results of DPCM-plus-SQ in Table III differ 

slightly from those provided in [9], since different random 

projections are used. One easily observes that, for both SPL 

and CoS, SDPC-plus-SQ improves 2.0 dB and 1.2 dB gain 

on average PSNR as compared to SQ alone and DPCM-

plus-SQ, respectively. In addition, Figs. 3 presents the rate-

distortion performance for different BCS recovery algo-

rithms combined with different BCS coding techniques for a 

bitrate ranging from 0.1 to 1.0 bpp, which sufficiently de-

monstrates the  superiority of SDPC over DPCM.  

 

5. CONCLUSION 

 

A novel coding strategy for block-based compressive sens-

ing, named spatial directional predictive coding (SDPC), is 

proposed, which efficiently utilizes the intrinsic spatial cor-

relation of natural images. To the best of our knowledge, 

this is the first time that directional predictive coding is in-

corporated into the framework of block compressive sensing. 

Experimental results substantiate significant improvements 

by SDPC-plus-SQ as compared with SQ alone and DPCM-

plus-SQ. 
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