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Abstract—In this paper, we propose a novel concept in eval-
uating the visual information when perceiving natural images -
the entropy of primitive (EoP). Sparse representation has been
successfully applied in a wide variety of signal processing and
analysis applications due to its high efficiency in dealing with
rich, varied and directional information contained in natural
scenes. Inspired by this observation, in this paper the visual
signal can be decomposed into structural and non-structural
layers according to the visual importance of sparse primitives.
Accordingly, the entropy of primitive is developed in measuring
visual information. It has been found that the EoP changing
tendency in image sparse representation is highly relevant with
the hierarchical perceptual cognitive process of human eyes.
Extensive mathematical explanations as well as experimental ver-
ifications have been presented in order to support the hypothesis.
The robustness of EoP is evaluated in terms of varied block
sizes. The dictionary universality is also studied by employing
both universal and adaptive dictionaries. With the convergence
characteristics of EoP, a novel top-down just-noticeable difference
(JND) profile is proposed. Simulation results have shown that
the EoP based JND outperforms the state-of-the-art JND models
according to the subjective evaluation.

Index Terms—Entropy of primitive, sparse representation,
orthogonal matching pursuit, visual information, just noticeable
difference

I. INTRODUCTION

THE human visual system (HVS) allows human beings
to perceive visual information from the outside world,

and the psychological process of visual information is known
as visual perception. As the ultimate receiver of images and
videos is the HVS, accurately evaluating visual information
plays an important role in the fields of image and video
processing. Generally, both near-threshold and supra-threshold
quality assessment models are highly revelent with the per-
ceptual cognition. It is widely believed that the HVS is not
able to perceive the variations of visual information when the
distortion is below a threshold, and this threshold is referred
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as the just-noticeable difference (JND). Image with distortions
below the threshold conveys approximately equal visual in-
formation to the original image for subjects. Recently, many
near-threshold models [1]–[4] have been proposed to generate
the JND profile for images and videos. However, very few
studies have shown that these near-threshold models can be
successfully applied to characterize perceptual distortions be-
yond the threshold level. In view of this, many supra-threshold
image quality assessment algorithms have been proposed to
evaluate the perceivable visual information loss [5]. However,
as the limited information known about HVS, neither state-
of-the-art near-threshold nor supra-threshold models has built
an effective system that performs as the HVS in estimating
visual information.

The near-threshold or typically the JND models have been
successfully applied in many applications, especially in im-
age/video coding [2], [4], [6] and quality assessment [7]. The
JND models can be classified into two categories, i.e. the
spatial-domain JND and the transform-domain JND [7]. Both
of them take advantages of visual characteristics of the HVS,
including contrast sensitivity function (CSF) [8], luminance
adaptation, and texture masking. Therefore, these kinds of
methodologies can be referred to as the “bottom-up” methods
[5], which are simulating the functionalities of the HVS.

In supra-threshold models, the popular mean square error
(MSE) and peak signal-to-noise ratio (PSNR) metrics have
been successfully employed in many realtime applications due
to its calculational efficiency. However they cannot correlate
well with the visual quality [9], [10]. It has motivated many
researchers to involve in developing more accurate image
quality assessment algorithm, such as structural similarity
(SSIM) [11], visual information fidelity [12], feature similarity
[13] and free-energy principle [14]. Recently, it has been
found that the natural image is highly structured and the
HVS can adapt to the structural information in natural scenes.
Therefore the SSIM and its variants [15]–[17], have been well
advocated in both academic and industry endeavors due to its
best tradeoff among accuracy and efficiency.

Sparse representation is an emerging and powerful method
to describe signals based on the sparsity and redundancy of
their representations [18] and is efficient in dealing with rich,
varied and directional information contained in natural scenes
[19]. In the literature [20], it is also interesting to find that
the primitive, or the basis in sparse representation has the
properties of spatially localized, oriented and bandpass, which
closely correspond to the characteristics of receptive fields
of simple cells. To perform sparse representation, an over-



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2015.2511838, IEEE
Transactions on Circuits and Systems for Video Technology

2

complete dictionary should be obtained first, where the typical
K-SVD [21] algorithm is employed for dictionary training.
The well-known matching pursuit family (MPF) algorithms
have been proposed for solving the sparse decomposition
problem [22]. The orthogonal matching pursuit (OMP) [23]
is one of the MPFs that works in a greedy fashion. Extensive
new algorithms have been developed by taking advantage
of the sparse characteristics to achieve the state-of-the-art
performance in a wide variety of applications, such as image
quality assessment [24]–[30], image denoising [31], image
restoration [32]–[35] and image/video coding [36]–[38].

Inspired by these works, we employ the technique of sparse
representation to interpret the perceptual cognition process
by decomposing the natural scene into structural and non-
structural layers. Along this vein, we further study the inverse
problem: how much information is contained or preserved in
the visual scene in terms of sparse decomposition? To address
this issue, instead of using numerical measures such as SSIM,
we analyze the visual scene based on the novel study of visual
perception, the internal generative mechanism (IGM). In IGM,
the brain optimizes the visual scene by predicting the primary
information [39], which is also called structural information
in this paper. The structural and non-structural visual signals
are distinguished by using different types of primitives to best
match the original visual signal. Motivated by the relationship
between the responses of neurons or sparse primitives, we
develop a novel concept in evaluating the visual information:
entropy of primitive (EoP). The basic idea of the EoP is to
employ the information conveyed by primitives to characterize
how much surprise there is when encountering a visual scene.
Interestingly, it has been found that the EoP can efficiently
estimate the visual information in perceptual cognitive process.
When the structural information achieves saturation, the EoP
curve tends to be stable and the reconstructed image reaches
the state without noticeable visual distortions. It motivates us
to propose a “top-down” JND model with the principle of EoP
based hierarchical visual signal representation.

Above all, the major contributions in this work include:

• The sparse primitives are classified into three groups to
characterize the inherent property, and the visual signal is
accordingly separated into several layers with different vi-
sual importance. The structural and non-structural visual
information can be well represented with these layers.

• The entropy of primitive (EoP) is proposed to measure
the visual information in the natural scenes, supported by
complete mathematical analysis and experimental verifi-
cations.

• With the concept of the EoP, a novel “top-down” JND
profile is proposed and outperforms state-of-the-art JND
models according to the subjective results.

In this paper, 50 images drawn from public databases are
utilized as shown in Fig. 1.

The rest of the paper is organized as follows. In Section
II, the visual perception is interpreted as a hierarchical signal
decomposition based on the sparse representation. In Section
III, the EoP is proposed to evaluate the visual information.
Mathematical interpretations and experimental verifications

Fig. 1. 50 test images used in this work.

are presented to demonstrate the reliability and robustness of
the EoP. We also propose an EoP based approach to generate
the JND profile in Section IV. Section V concludes this paper
and emphasizes the future works.

II. HIERARCHICAL VISUAL SIGNAL SPARSE
REPRESENTATION

A. Sparse Representation Dictionary Learning

Image primitive coding is based on the Sparseland model,
which assumes that natural images x(x ∈ Rn) can be approx-
imated by a linear combination over an over-complete dictio-
nary. Put more formally, this can be written as ∀x, x ≈ Ψα
and ‖α‖0 � n, where Ψ(Ψ ∈ Rn×k) is the over-complete
dictionary, and α(α ∈ Rk) is the representation vector. The
notation ‖•‖0 represents the l0 norm. Typically, we assume
that k > n, implying the dictionary Ψ is redundant to x.

In order to train the over-complete dictionary, the K-SVD
algorithm [21] is employed in this work, which consists of
two process, the sparse coding and dictionary updating. The
training samples are generated by partitioning the input image
X into non-overlapped patches x1, x2, . . . , xi, . . .. Assuming
a local Sparseland model on image patches, given the set of
training samples, the dictionary that leads to the best repre-
sentation of the training samples under the sparsity constraint
is generated. This process can be formulated as follows,

(Ψ, {αi}) = arg min
Ψ,{αi}

∑
k
‖xi −Ψαi‖22, s.t.‖αi‖0 < L, (1)

where L controls the sparse level.
Fig. 2 illustrates an example of the dictionary trained by the

8× 8 patches partitioned from Lena image. In this paper, the
atom of dictionary Ψ is called the primitive, denoted by ψi
hereinafter.

B. Sparse Primitives Classification

The receptive fields of simple cells in human primary
visual system can be characterized as being spatially localized,
oriented and bandpass [20]. Sparse coding has been shown
to be an effective representation approach in accounting for
these properties. In this subsection, we first employ a strategy
to divide the sparse primitives into multiple categories in
terms of their inherent properties regarding to the perceptual
information.
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Fig. 2. Illustration of 256 primitives trained by non-overlapped 8×8 patches
from Lena image.
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Fig. 3. DCT coefficients classification [40].

In [40], an image patch can be classified into distinct types
depending on its energy distribution in frequency domain,
where several thresholds are predefined for clustering. It has
been widely recognized that the Discrete Cosine Transform
(DCT) is highly effective in decomposing image signal to
different frequency sub-bands, as illustrated in Fig. 3. In
this work, we apply k-means cluster algorithm to adaptively
divide primitives into different categories, namely the primary,
sketch and texture, respectively. For dimensional reduction, we
extract two features from the DCT domain and one feature
from spatial domain, and employ these features in primitive
classification.

The two DCT domain features are defined as follows,

f1 = LF, (2)

f2 = LF/
(
MF +HF

)
, (3)

where LF , MF and HF refer to the mean values of LFs,
MFs and HFs in Fig. 3, respectively.
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Fig. 4. 3D plots of primitive classification using k-means algorithm. (The
red dots, blue crosses and green stars represent texture, sketch and primary
primitives, respectively. The three black solid dots denote the central points
of each classification.)
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Fig. 5. Primitives classification of Lena and Plane images, where the
primitives are classified as: (i) texture, (ii) sketch, (iii) primary.

Moreover, the Laplacian operator, which is efficient in edge
detection, is performed to obtain the effective feature in spatial
domain. Let the third feature f3 denote the mean value of the
Laplacian map generated by a primitive.

Finally, these features can be combined as a feature vector
notated by F = {f1, f2, f3}. For each sparse primitive ψi, we
extract the feature vector Fi. The k-means algorithm is then
applied to divide the feature space {F} into several parts, as
shown in Fig. 4 & 5. Primary primitives with smooth changes
have relatively higher f1 and lower f2 and f3, while the texture
ones perform on the contrary and the sketch primitives are
located between them. Note that most of the primitives are
classified into the texture type, only a small part belongs to
the primary type according to the results.

C. Hierarchical Visual Signal Sparse Representation

Based on the IGM theory, visual signal is formed by the
primary visual information and uncertain information. The
primary visual information is predicted by correlations among
stimuli as well as priori knowledge in brain. In [39], the
visual perception is partitioned into two portions, the predicted
portion and the disorderly portion, corresponding to the pri-
mary and uncertain information, respectively. Note that the
predicted portion contains mostly the content-dependent struc-
tural information, while the disorderly portion corresponds to
the non-structural information. Generally, the non-structural
information is content-independent. In this subsection, we
propose the hierarchical visual signal representation based on
the sparse coding, where the images can be decomposed into
structural and non-structural layers.

Sparse coding aims at obtaining the optimal representation
coefficients αi in terms of the trained dictionary Ψ, under
the accuracy and sparsity constraints. It can be formulated as
follows,

αi = arg min
αi

∑
k
‖xi −Ψαi‖22, s.t.‖αi‖0 < L, (4)
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(a) Patch 1 in Lena image (b) Patch 2 in Lena image

Fig. 6. Sixteen primitives selected by OMP algorithm (raster order).

(a) Lena image (b) Plane image

(c) Pepper image (d) Butterfly image

Fig. 7. Plots of the primitive numbers in terms of the iteration L. The green,
blue and red lines indicate primary, sketch and texture primitives, respectively.

where αi is the sparse representation vector. This can be solved
by a number of approximation algorithms. In this paper, the
typical orthogonal matching pursuit (OMP) algorithm [23] is
employed to solve this problem.

The OMP method works in a greedy fashion that chooses
the most similar primitive with the residual at each iteration.
Note that the “residual” at the first iteration is the original
patch itself. Then the original signal is subtracted by the
chosen primitive to update the residual. Note that the notation
L will be used to indicate a specific iteration during the OMP
algorithm.

Intuitively, the primitive which is most similar with the
image patch is picked first, followed by some detailed prim-
itives for shaping the visual contents. Let ψi denote the ith

selected primitive by the OMP algorithm. As shown in Fig.
6, sixteen picked primitives (ψ1∼ψ16) are arranged in raster
order. Note that the first few primitives are visually smoother
than others. It can be inferred that the primary primitives are
captured before sketch and texture primitives in a statistical
perspective. To verify this hypothesis, another simulation is
conducted, where the number of each type of primitive in
every iteration is recorded during the sparse reconstruction
process. The results are depicted in Fig. 7, from which we
can conclude that:

• The number of primary primitives dominates in the first
iteration (i.e. when L = 1), though Fig. 5 has shown that

the number of the primary primitives is smallest. Then
the plot of primary primitive drops dramatically with the
increasing L.

• The number of sketch primitives is relatively small and
decreases slowly to a low level. Note that for the case
of Butterfly image in Fig. 7d, the number of sketch
primitives is maximum at the first iteration. This can be
accounted by the large areas of edge and texture contents
in the Butterfly.

• The number of texture primitives is always smallest when
L = 1 and achieves maximum with the increasing L.

It can be concluded that OMP scheme decomposes image
signal into multiple layers, and these layers are naturally
ordered by perceptual importance, as demonstrated in Fig. 8.
• The most significant structural information can be recon-

structed by the first layer (L = 1), which is also referred
to as the primary layer.

• The second layer (L ∈ [2∼L̃]), or sketch layer, recovers
the detailed information. Note that L̃ corresponds to the
boundary between the second and the third layers, which
will be specifically defined in Section III.

• With the first two layers, almost all the perceptual infor-
mation that can be captured by the HVS, has been well
represented. The combination of the two layers is named
as the structural layer. Different from that, the perceptual
information contained in the third layer (L > L̃), i.e.
the non-structural layer, is negligible due to its low
correlation with the visual experience.

Fig. 9 shows the sparse reconstruction process of the Lena
image, where we can clearly observe that the image recon-
structed by primary layer (L = 1) recovers the basic infor-
mation but with remarkable blocking artifacts. With the help
of the sketch primitives in the second layer, these artifacts are
strongly alleviated and the blurry edges are rapidly sharpen.
Most of the structural information has been recovered until
L = 6. This observation accords well with the visual system
mechanism, wherein the primary component (what object is
it) is perceived before the details (what does the object look
alike). However human can hardly distinguish the differences
between the reconstructed images (from L = 9 to L = 13), as
these visual elements are highly non-structured and insensitive
to the HVS.

III. ENTROPY OF PRIMITIVE

In Section II the concept of hierarchical visual signal
representation is introduced, where we incorporate the typical
sparse reconstruction method (OMP algorithm) with human
visual perception. In fact, the hierarchical structure in visual
representation is closely related to the early work in [20]. It
is stated that the major properties of sparse primitives (or
receptive fields of simple cells) include spatially localized,
oriented and bandpass, which has been utilized in Section II. In
addition sparse primitives have been shown to be effective in
dealing with rich, varied and directional information contained
in natural scene. In this section, the novel concept of entropy
of primitive (EoP) is proposed to bridge the sparse repre-
sentation and visual information evaluation. In this way, the
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Fig. 8. Illustration of the hierarchical image representation and reconstruction process, that can be decomposed into the structural and non-structural layers.

(a) Original image (b) L = 1 (c) L = 3 (d) L = 5

(e) L = 7 (f) L = 9 (g) L = 11 (h) L = 13

Fig. 9. Reconstructed Lena images with different layer numbers (i.e. L).

visual information can be quantified to evaluate the “surprise”
level when encountering a visual scene. Consequently, the
boundary between the structural and non-structural layers can
be determined.

A. Entropy of Primitive

The second law of thermodynamics states that the entropy
of an isolated system never decreases and isolated systems
always evolve toward thermodynamic equilibrium, a state with
maximum entropy. However for the biological agents such as
HVS, this maximum entropy state could never be reached as
their internal states are limited to a relative low entropy level
for keeping themselves within some physiological bounds.
This bound is determined by the level of “surprise” in a
particular visual scene which is known as the “free energy

principle” [14]. Analogous to this law, we propose a novel
concept to measure the state in the image representation
system when responding to a “surprise” environment, i.e. the
entropy of primitive (EoP). It is inspired by the observation in
Fig. 7, wherein the three curves have the similar tendency of
converging to a stable state. This state could be related to the
upper bound of the visual system.

Before introducing the EoP, useful mathematical notations
should be firstly defined. Let nij indicate the number of the
jth primitive selected in the ith iteration during the OMP
algorithm. For instance, 100 patches select the first primitive in
the first iteration, such that n1

1 = 100. N i
j represents the total

number of the jth primitive used in the previous i iterations,
which can be calculated as follows,

N i
j =

∑i

t=1
ntj . (5)
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(a) Lena image (b) Plane image

(c) Pepper image (d) Butterfly image

Fig. 10. The EoI and EoP curves in terms of the iteration L.

Then two probability density functions (PDF) can be given by

pi (j) ,
nij∑
t n

i
t

, (6)

P i (j) ,
N i
j∑

tN
i
t

, (7)

which represent the distributions of primitives in the ith

iteration and in the previous i iterations, respectively. They
can also be interpreted as the increment distribution and
cumulative distribution of the primitives during the OMP
algorithm. According to the relationship between the receptive
fields of simple cells and primitives, we evaluate how surprise
the receptive field reflects on the encountered input scene by
estimating the information of primitives. Specifically, based on
the Shannon theory, two entropy values have been defined as
follows,

EoIi , −
∑k

j=1
pi (j) log pi (j), (8)

EoPi , −
∑k

j=1
P i (j) logP i (j), (9)

where k is the number of the primitives. The Entropy of
Increment (EoIi) and the Entropy of Primitive (EoPi) indicate
the entropy of the ith distribution and the entropy of the
cumulative distribution of previous i iterations, respectively.
Note that EoP1 = EoI1 because they correspond to the same
distribution in the first iteration.

The EoI and EoP curves in terms of the iteration L have
been shown in Fig. 10, where the horizontal axis is the iteration
L. With the increasing L, the EoPL monotonously rises and
converges to a constant level. It is also interesting to observe
that the value of EoIL always keeps in a relatively high level
except when L = 1.

(a) Building image (b) Parrot image

Fig. 11. The EoI and EoP curves using the specific dictionary trained
from Lena image. The thumbnail of test image is given in the right corner.

B. Robustness Verification of EoP

To verify the robustness of EoP, we conduct several ex-
periments considering the impacts from both the dictionary
universality and the patch size.

1) Universal Dictionary vs. Adaptive Dictionary: First, we
train a dictionary by Lena image and apply it to other natural
images. The corresponding EoI and EoP curves are depicted
in Fig. 11, where the similar statistics have been achieved
compared to that in Fig. 10, though the visual content of test
images is completely distinct to the training image.

Subsequently, a universal dictionary is trained over the 25
original images in TID2008 dataset [41], and is applied to
all the test images in Fig. 1. The K-SVD algorithm [21]
is a typical method for training the content-adaptive sparse
dictionary, which is performed in an iterative batch way by
accessing the whole training set at each iteration. To achieve
this we have to efficiently handle very large training data, an
advanced and efficient online training algorithm [42], based
on stochastic approximation, is employed for obtaining the
universal dictionary in this work. The trained dictionaries
using adaptive and universal approaches are demonstrated in
Fig. 12, where it can be found that the primitives in universal
dictionary contain less structural contents comparing with
those in adaptive dictionary especially for texture and sketch
primitives.

The EoP curve comparisons between universal and adaptive
dictionary are demonstrated in Fig. 13. Note that both of the
two dictionaries contain 256 primitives with the size of 8×8. It
reveals that the universal dictionary leads to larger convergence
EoP value, which approaches the extreme entropy of uniform
distribution over 256 bins. This can be accounted by the
instability of the universal dictionary. However the converging
tendencies are similar regardless of which dictionary is used.

2) The Influence of Patch Size: To analyze the impact of
various patch sizes on EoP , we change it from 8×8, 12×12 to
16×16 and the corresponding dictionary is adaptively trained
for each input image. For a fair comparison, the dictionaries
with different size should have identical completeness γ. The
completeness here is defined as γ , k

n , considering the
dictionary Ψ ∈ Rn×k. In this work we set γ = 4, i.e. the
number of primitives is 256 for 8 × 8 patches, and so on.
The experimental results are reported in Fig. 14, where the
similar EoP tendency has been found for different patch sizes.
However the convergence values are distinct, because they are
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(a) Adaptive dictionary
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(b) Universal dictionary

Fig. 12. Visualization of adaptive and universal dictionaries. (a) Adaptive
dictionary trained using Plane image; (b) Universal dictionary trained using
all images in TID2008 dataset [41]. Primitives are classified into different
categories including: (i) texture primitives, (ii) sketch primitives and (iii)
primary primitives.
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Fig. 13. EoP curve comparison between adaptive and universal dictionaries.

with different number of primitives resulting in different limit
values.

C. A Closer Look at the EoP

To further explore the EoP , extensive mathematical analy-
sis as well as experimental verifications have been presented
in this subsection.

It has been found in Fig. 10 that the EoI tends to be
constant when L ≥ 3, and interestingly the EoP has the similar
trend approaching the EoI curve after this threshold. It should
be noted that the EoPi is not simply calculated by adding
EoPi−1 and EoIi, but is determined by the summation of the
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Fig. 14. EoP curve comparison among different Patch sizes, including 8×8,
12× 12 and 16× 16.

corresponding two distributions, i.e.

N i
j = N i−1

j + nij . (10)

Accordingly we assume that the EoIL corresponds to an
identical distribution when L is larger than the threshold L∗,
and we denote this identical distribution as Bj . With this
definition, we have

nij , Bj (i > L∗) , (11)

and the corresponding PDF of Bj can be written as

pB (j) ,
Bj∑
j Bj

. (12)

Then let the Aj represent the summation of the previous L∗

distributions, i.e.
Aj , NL∗

j . (13)

Such that the PDF of the distribution Aj is given by

PA (j) ,
Aj∑
j Aj

. (14)

Obviously we get that EoPL∗ = −
∑k
j=1 PA (j) logPA (j).

At this point, we are focusing on the value of EoPL∗+n, where
n ∈ Z. Substituting Eqn. (10) (11) (13) into the Eqn. (7), we
have,

PL
∗+n (j) =

Aj + nBj∑
j Aj + n

∑
j Bj

. (15)

Consequently,

EoPL∗+n = −
k∑
j=1

Aj + nBj
SA + nSB

log
Aj + nBj
SA + nSB

. (16)

Concisely, we simplify the definitions as SA ,
∑
j Aj and

SB ,
∑
j Bj . Considering the limit of Equ. (16), we have

lim
n→∞

EoPL∗+n = −
∑k

j=1

Bj
SB

log
Bj
SB

. (17)



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2015.2511838, IEEE
Transactions on Circuits and Systems for Video Technology

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

K
L 

di
ve

rg
en

ce

 

Lena
Plane
Pepper
Butterfly

Fig. 15. KL divergence of adjacent increment distributions in terms of L.

Note that the right side of the limitation is exactly the
entropy of the assumed identical distribution Bj in Equ. (11),
indicating that the limit value of EoP is dominated by the
image-independent identical distribution. It explains why the
EoP curves of different images increase to approach the EoI
curves and converge to an approximately equal value. This
limitation value in experiments (about 6.5) is much higher
than the initial entropy EoP1, but is close to the maximum
entropy of the uniform distribution (8, because the number of
primitives is 256). This corresponds well to the upper bound
of entropy state in visual system as stated in the free energy
principle.

To further demonstrate the reasonability of the hypothe-
sises of the image-independent identical distribution, another
verification experiment is conducted, in which the Kullback-
Leibler divergence (KL divergence) is employed to measure
the difference between adjacent increment distributions pi (j)
and pi+1 (j). The KL divergence defined in Equ. (18) satisfies
KL

{
pi (j) ||pi+1 (j)

}
≥ 0 with equality if, and only if

pi (j) = pi+1 (j).

KL
{
pi (j) ||pi+1 (j)

}
, −

k∑
t=1

pi (t) log

{
pi+1 (t)

pi (t)

}
. (18)

The results have been reported in Fig. 15, where the increment
distribution beyond a threshold (i.e. nij or pi (j) when i > L∗)
has no significant changes since the KL divergence of these
adjacent distributions achieves almost 0. The results accord
well with our hypothesis that the image-independent identical
distribution exists in the visual perception system, and finally
creates the convergence of the EoP curve as well as the
saturation of visual information.

To gain more insights into this problem, the geometrical
interpretation of the OMP method is further demonstrated in
Fig. 16. We treat the primitives as n-dimensional vectors in a
n-dimensional space, denoted by ψi. Given a n-dimensional
signal X , OMP algorithm finds a linear combination of the
primitives to approximate X in a greedy fashion. The first
chosen primitive ψ1 is the most similar one with the given
X . The non-local similarity contained in natural scene will
decrease the instability of the sparse system resulting in
relatively small entropy. However, in the following iterations
the “randomly” distributed residual signals will lead to in-

Fig. 16. Geometrical illustration of the OMP method. The bold solid line
indicates the original signal X , the other solid lines denoted by ψ1 . . . ψ4 are
primitives selected by the OMP. The dashed lines represent the reconstructed
signals in each iteration, which are gradually approaching to X .

(a) Lena image (b) Plane image

(c) Pepper image (d) Butterfly image

Fig. 17. Angular disparity plots in terms of L.

creasing and convergent entropy value. It gives another reliable
interpretation of the high convergent value of the EoP and EoI.

To quantify the randomness level of an image, the angular
disparity is defined as follows,

ΓX ,
N∑
i=1

N∑
j=1

〈xi, xj〉
|xi| · |xj |

, (19)

where X represents the original or residual image, and xi
is a patch in it. 〈xi, xj〉 denotes the inner product of the two
vectors. The larger value of ΓX corresponds to higher disorder
level of the image system. The ΓX of the residual images
during the sparse reconstruction process has been plotted in
Fig. 17, indicating that residual signals (L > 1) are much
more randomly distributed than the original signal (L = 1). It
can be inferred that the significant increment of disorder level
causes the dramatically increasing and finally converging EoP
curve.
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Fig. 18. The framework of the EoP based JND scheme. (a) Image partitioning
and dictionary learning, (b) Sparse decomposition using OMP method, (c)
EoP curve, (d) Computing the threshold L̃, (e) Image reconstruction with
L̃ primitives, (f) Generating the JND map by subtracting the reconstructed
image from the original image.

D. Entropy of Primitive and Visual Information

It has been stated in Section II that sparse representation
corresponds to a process of hierarchical signal decomposition,
in which the high level sparse primitives of non-structural
layer give less information to the HVS. Also it is widely
acknowledged that the entropy is an effective measurement
of information according to Shannon’s theory. Consequently
we propose to apply EoP in evaluating the visual information.
It can be supported by the fact that the quality of reconstructed
image and the corresponding EoP value have the similar con-
verging tendency, implying the saturated visual information.

Consequently, the threshold L̃ between the structural and
non-structural layers, as mentioned in Section II, can be
defined as follows,

L̃ = arg min
i

i, s.t.
EoPi − EoPi−1

maxj (EoPj)−minj (EoPj)
< ε, (20)

where ε is the control parameter that determines the conver-
gence condition and is set as 0.01 in the implementation.
This threshold also indicates the saturation of perceptual
information, beyond which the non-structured visual elements
are negligible that can be hardly perceived by the HVS.

IV. APPLICATION: JUST NOTICEABLE DISTORTION

A. EoP based JND profile

In this section, the EoP is employed in generating the JND
map, motivated by the convergence characteristic of the visual
information from the EoP perspective. The framework of the
proposed method is illustrated in Fig. 18. Given an original
image X , firstly it is partitioned into non-overlapped patches
and the K-SVD algorithm is applied for training the primitive
dictionary. Then each patch is decomposed into a linear combi-
nation of a few primitives by the OMP approach. The primitive

distribution in each iteration can generate corresponding EoP
value by its definition. The threshold L̃ can be calculated using
Eqn. (20). Subsequently, the image can be reconstructed by
the first L̃ primitives, while the other primitives are discarded.
The reconstructed image denoted as X̃ has been shown to be
visually equal with the original image, because the negligible
visual information is highly non-structured. Therefore, the
image X̃ can be treated as perceptual lossless. At last the JND
map is generated by subtracting the perceptual lossless image
from the original image, which can be defined as follows,

JND ,
∣∣∣X̃ −X∣∣∣ , (21)

where the notation |•| indicates the absolute operator.

B. Comparison with the state-of-the-art JNDs

The performance of the JND model can be evaluated by
its effectiveness in concealing distortions in images. The JND
noised image is generated by injecting the JND map into the
original image as follows,

X̃ (i, j) = X (i, j) + η · Srandom (i, j) ·M (i, j) , (22)

where i and j are coordinates in pixel domain, X (i, j)
and M (i, j) represent a pixel in the original image and
the corresponding JND map, respectively. X̃ is the noised
image by JND. Srandom (i, j) is randomly set as -1 or +1.
The parameter η should be adjusted to guarantee that the
noised images by different JND models have the identical error
energy, i.e. the same PSNR or MSE. With the same distortion
level, the better perceptual quality the noise-injected image
has, the more accurate the JND model is. Namely, with a
same level of perceptual visual quality, a more accurate JND
model can shape more noises in an image [4].

Perceptual visual quality of the JND-guided noised images
can be evaluated using subjective viewing tests. In this work,
the two-alternative forced choice (2AFC) evaluation method
[43] is conducted, which is widely employed in image and
video oriented applications. In the 2AFC experiment, a pair
of images is presented to the subject at the same time, one
of the pair is the original image while the other is the noised
version. Then the subject is forced to choose one with pleasing
quality from the pair. After all pair-wise tests, the percentage
ω of correctly choosing the original image over all test pairs
is recorded. If the ω is close to 0.5, the subject can hardly
distinguish the original and noised image, indicating a more
accurate JND model.

In this work, 14 subjects with half experts and half non-
experts were invited to participate in the subjective experiment.
Each observer was preliminarily instructed before the actual
experiments. All the 50 images in Fig. 1 were tested by
subjects. The image pairs were presented in a LCD monitor
with 1920 × 1080 resolution while keeping constant viewing
conditions. Each pair allows up to 5 seconds to response
relying on the intuition for the testers. The EoP based JND was
compared to the state-of-the-art JND models including [44]–
[46]. Notice that all the noised images are subjected to the
identical distortion level (PSNR values equal to 35.0 dB in the
experiments). Fig. 19 shows the subjective results indicating



1051-8215 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2015.2511838, IEEE
Transactions on Circuits and Systems for Video Technology

10

the EoP based JND outperforms other JND models as the
averaged percentage ω of EoP based JND is much closer to
0.5. It also shows that the HVS can hardly notice the noises
injected by EoP based JND. Furthermore, the noised images by
different JNDs are demonstrated in Fig. 20. It is obvious that
the images noised by EoP based JND have better perceptual
quality in comparison with others, though they have the same
PSNR. Consequently, the proposed JND profile outperforms
the state-of-the-art JND models, demonstrating that the EoP
is an effective approach in evaluating visual information.

V. CONCLUSION AND FUTURE WORK

In this paper, we bridge the sparse representation and visual
information evaluation with the concept of EoP. Firstly, we
interpret the visual perception as a hierarchical representation
process in the sparse representation perspective. The sparse
primitives are classified into different groups according to their
inherent properties, in the meanwhile the visual perception
can be partitioned into structural (primary and sketch) and
non-structural (texture) layers. It has also been found that the
structural layer can shape most of the visual information, while
the non-structural layer is negligible for HVS. Accordingly
the concept of the entropy of primitive (EoP) is introduced
to estimate the visual information and also to determine the
boundary between structural and non-structural layers. It is
further demonstrated that the EoP is highly relevant with visual
information, supported by sufficient mathematical analysis and
experimental verifications. We also verify the robustness of
the EoP according to different patch sizes and dictionary
universality. Moreover the EoP is applied in generating the
JND map, which has been verified to outperform the state-of-
the-art JND schemes in the subjective experiments.

The effective of EoP may be understood as a successful
combination of the psychological process in human visual
system and sparse representation. Based on the good cor-
relation with visual information, the EoP based applications
such as image quality assessment and image/video coding will
be further studied. In addition, we will further explore the
relationship between sparse representation and visual infor-
mation representation by considering: 1) adaptively selecting
the patch size to better characterize the visual contents, 2)
applying different weights to primitives in terms of their visual
importance, 3) the impacts of viewing conditions on visual
perception, such as viewing distance and image resolution.
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